
Low-Level Liquid Types

Patrick Maxim Rondon and Ming Kawaguchi and Ranjit Jhala
Department of Computer Science and Engineering

University of California, San Diego

September 9, 2009

Abstract

We present Low-Level Liquid Types, a refinement type system for C based on Liquid Types. Low-Level
Liquid Types combine refinement types with three key elements to automate verification of critical safety
properties of low-level programs: First, by associating refinement types with individual heap locations
and precisely tracking the locations referenced by pointers, our system is able to reason about complex
invariants of in-memory data structures and sophisticated uses of pointer arithmetic. Second, by adding
constructs which allow strong updates to the types of heap locations, even in the presence of aliasing,
our system is able to verify properties of in-memory data structures in spite of temporary invariant
violations. By using this strong update mechanism, our system is able to verify the correct initialization
of newly-allocated regions of memory. Third, by using the abstract interpretation framework of Liquid
Types, we are able to use refinement type inference to automatically verify important safety properties
without imposing an onerous annotation burden. We have implemented our approach in Csolve, a tool
for Low-Level Liquid Type inference for C programs. We demonstrate through several examples that
Csolve is able to precisely infer complex invariants required to verify important safety properties, like
the absence of array bounds violations and NULL dereferences, with a minimal annotation overhead.

1 Introduction

Static verification is a crucial last line of defense at the lowest levels of the software stack, as at those levels we
cannot fall back on dynamic mechanisms to protect against bugs, crashes, or malicious attacks. Recent years
have seen significant progress on automatic static verification tools for systems software. These tools employ
abstract interpretation [3, 16] or software model checking [1, 15, 5, 30] to infer path-sensitive invariants
over program variables like status flags and counters and thereby verify control-sensitive safety properties.
Unfortunately, these approaches have been proven insufficient for verifying data-sensitive properties of values
stored in lists, trees, etc., as this requires the precise inference of invariants of data values stored within
unbounded collections of heap-allocated cells.

In previous work we introduced Liquid Types [26], a refinement type system for ML that marries the
ability of ML types to infer coarse invariants for polymorphic data structures (and higher-order functions)
with the ability of predicate abstraction and SMT solvers to infer path-sensitive invariants of individual
variables. We demonstrated that this symbiotic combination enables the highly automated verification of
complex data-sensitive properties of high-level, functional programs [18]. Unfortunately, the very nature of
low-level, imperative code, typically written in C, makes the translation of type-based mechanisms to the
setting of systems software verification extremely challenging.
Lack of Types First, due to the presence of casts and pointer arithmetic, low-level systems code is
essentially untyped. C’s type system is designed only to allow the compiler to determine the number of
bytes that should be read or written by each instruction, and hence, unlike the type systems of higher-level
languages, C’s types provide no invariants about data values.
Mutation Second, mutation makes the very notion of type refinement problematic. The key idea in
refinement types is to adorn the basic underlying types with refinement predicates over program variables.

1

For example, in an ML program, the refinement type {ν :int | x ≤ ν} describes an integer that is greater
than the program variable x. However, this type is meaningless if the value of x can change over time.
Aliasing Third, even if we could meaningfully track mutation, the presence of aliasing makes it challenging
to determine the exact entity that a given operation mutates. Multiple (aliased) program variables could be
used to access the same heap-allocated cell, and dually, the same program variable could at different points
in time, refer to different cells within a collection.

We introduce Low-Level Liquid Types (Ltll) a static refinement type system for C that enables the
precise verification and inference of data-sensitive properties of low-level software. Ltll tackles the above
challenges via a three-tiered design.

First, Ltll is founded on a new Basic type system that classifies values and heaps. A value is either a
datum of a given size e.g., a 4-byte integer or a 1-byte character, or a reference corresponding to a pair of a
heap location and an offset within the location. Intuitively, an offset corresponds to a field (resp. cell) of the
structure (resp. array) resident at the location. A heap is a map from locations to a sequence of offset-value
bindings that define the contents of the given location. By precisely tracking arithmetic on offsets, Basic
types provide coarse invariants about the basic shapes of data values.

Second, each Basic type is refined with a predicate that captures precise properties of the values defined
by the type. Ltll makes a clear separation between immutable state, which is tracked using a traditional
type environment, and mutable state which is tracked in a flow-sensitive heap. We ensure soundness by
restricting the refinements to pure predicates that refer only to immutable values. Of course, in C all entities
are mutable. We recover precision for stack-allocated variables by first carrying out an SSA renaming, which
creates different (immutable) versions for the variables at different program points.

Third, we recover precision for heap-allocated locations by using the Basic type information to strongly
update the heap contents on writes through pointers. Since strong updates are unsound in the presence of
aliasing, Ltll distinguishes between abstract locations which summarize a collection of memory locations
to which there may be multiple references, and concrete locations which describe exactly one location to
which there is, at any given point, exactly one reference. Ltll enables strong updates by enforcing the
requirement that all pointer reads and writes are to concrete locations, and by employing two mechanisms,
inspired by version control systems, to account for aliasing: unfold, which “checks out” a concrete reference
to a particular location from the set described by an abstract location, and its dual, fold, which “commits”
the changes made to the particular location back into the abstract location after ensuring that the particular
location satisfies the invariants of the abstract location. Together, the automatically inserted fold and
unfold annotations ensure that the invariants for an abstract location soundly apply to all the elements that
correspond to that location, while simultaneously allowing strong updates. This is crucial, as strong updates
are essential for both establishing and tolerating temporary violations of the invariants that are ubiquitous
in low-level code.

Finally, Ltll uses the abstract interpretation framework of Liquid Types to permit automatic inference
of the refinements. The typing rules directly correspond to an algorithm that generates a system of subtyping
constraints over templates containing variables that stand for the unknown refinements. These constraints
reduce to a system of logical implication constraints that are solved via predicate abstraction in order to
yield the refinement types and hence, precise invariants, for different program elements.

To demonstrate the utility of Ltll, we have implemented it in Csolve, a prototype static verifier for
C. Csolve takes as input a C program, the Basic types of the program’s functions, and a set of logical
predicates and returns as output the inferred dependent types of local variables and heap contents along
with a report of any type errors that occurred. Through a set of challenging case studies, we show how the
combination of types and predicate abstraction enables the precise, path-sensitive verification and inference
of control-sensitive properties of individual variables and data-sensitive properties of aggregate structures.

2 Overview

We start with a high-level overview of Low-Level Liquid Types, and then, via a sequence of examples, we
illustrate how they enable the precise static verification and inference of program invariants in the presence of
challenging low-level programming constructs, including pointer arithmetic, memory allocation, temporary

2

invariant violations, aliasing and data structures.
Basic Types Our system is based on a new Basic type system for C where every program variable is either
a basic data value of some size, e.g., a 4-byte integer denoted by int, or a reference comprising a location
and an index within the location denoted by ref(`, i), where ` is the location and i the index within the
location. An index is either a natural number n, which is a singleton offset used to model pointers to specific
fields of a structure, or of the form n+m, which is a sequence of offsets {n + lm}∞l=0 used to model pointers
into an array of items of size m that starts at offset n. Thus, ref(`, 4) is a (possibly null) pointer that refers
to a location ` at (field) offset 4, while ref(`, 0+4) is a (possibly null) pointer that refers to a location within
an array of 4-byte integers.
Basic Heaps To ensure the soundness of types in the presence of mutation, our representation of program
state is partitioned into an environment, which is a standard sequence of type bindings for immutable
variables, and a heap, which is a mapping from locations ` to a set of index-type pairs that describe the
contents of the location, called a block. For example, the heap

`1 7→ 0:int, 4:int
`2 7→ 0+1 :char

has two locations. The first, `1, contains a structure with two integer fields (at offsets 0 and 4 respectively).
The second, `2, contains an array of one-byte characters (denoted char).
Refinement Types and Heaps In our system, program invariants are captured via refinement types
[23, 12, 2, 26] denoted by {ν :τ | e} where τ is the Basic type being refined, ν is a special value variable that
denotes the value being described, and e is the refinement predicate, a Boolean-valued expression containing
the value variable. Intuitively, the refinement type describes the set of values c of the Basic type τ such
that the predicate e[c/ν] evaluates to true. Thus, {ν :int | 0 ≤ ν} describes the set of non-negative integers,
and {ν :ref(`, 0) | ν 6= 0} describes the set of non-null references to a location ` at offset 0. A refinement
heap is a heap where each location is mapped to a sequence of offset-refinement-type pairs. For example,
`1 7→ 0:{ν :int | 0 ≤ ν} is a heap with a location `1 which contains a non-negative integer at offset 0.
Liquid Types A logical qualifier is a Boolean-valued expression over the program variables, the value
variable ν, and a placeholder variable ?. We say that a qualifier q matches the qualifier q′ if replacing some
subset of the free variables in q with ? yields q′. For example, the qualifier ν ≤ x + y matches the qualifier
ν ≤ ? + ?. We write Q? for the set of all qualifiers not containing ? that match some qualifier in Q. In the
rest of this section, let Q be the set

{0 ≤ ν, ν = ? + ?, ν = BS (ν),
BS (ν) = BS (?),BE (ν) = BS (ν) + ?}

The terms BS (·) and BE (·) are uninterpreted function applications denoting the start and end addresses
of memory blocks; we will explain these shortly. A liquid type over Q (abbreviated to just liquid type)
is a refinement type where the refinement predicates are conjunctions of qualifiers from Q?. Our system
enables inference by requiring that the certain entities, e.g., loop-modified variables, functions and blocks in
aggregate structures, have liquid types.

2.1 Local Invariants

We begin by showing how our system uses local refinements for individual program variables to verify the
safety of the pointer dereferences in the make string function shown in Figure 1. The function takes an
integer parameter n, allocates a new block of memory of size n, iterates over the block using str to initialize
it, and returns a reference to the block.
Basic Types First, we describe the Basic types computed for each variable. The function calls malloc to
create a new heap location `1 and returns a pointer to the location with offset 0. Thus, str gets the Basic
type ref(`1 , 0). str is initialized with res but is updated inside the loop with an increment of 1. Hence, it
gets assigned the Basic type ref(`1 , 0+1). The loop index i gets the Basic type int.

3

char *make_string(int n) {
char *res;
char *str;

1: if (n < 0) return NULL;
2: res = (char *)malloc(n*sizeof(char));
3: str = res;
4: for(int i = 0; i < n; i++) {
5: *str++ = ’\0’;

}
6: return res;
}

Figure 1: Example: make string

typedef struct {
int len;
char *str;

} string;

string *new_string(int n, char c){
string *s;
char *str;

0: if (n < 0) return NULL;
1: s = (string *)malloc(sizeof(string));
2: s->len = n;
3: str = make_string(n);
4: s->str = str;
5: init_string(s,c);

return s;
}

void init_string(string *s, char c){
for (int i = 0; i < s->len; i++) {

s->str[i] = c;
}

}

Figure 2: Example: new string
typedef struct _slist {

struct _slist *next;
string *s;

} slist;

slist *new_strings(int n) {
string *s;
slist *sl, *t;

1: sl = NULL;
2: for (int i = 1; i < n; i++) {
3: s = (string *)malloc(sizeof(string));
4: s->len = i;
5: s->str = make_string(i);

6: t = (slist *)malloc(sizeof(slist));
7: t->s = s
8: t->next = sl;
9: sl = t;

}

return sl;
}

Figure 3: Example: new strings

Pointer Allocation and Arithmetic To specify when it is safe to dereference a pointer, we refine the
output type of malloc so that it contains information about the size of the allocated block. In particular,
in our system malloc returns a value of type

{ν :ref(`, 0) | BLen(ν, n)}

where n is the size argument passed to malloc and BLen is the following block length predicate:

BLen(ν, n) .= BS (ν) = ν ∧ BE (ν) = ν + n

The refinement states that the return value is equal to the start of the location it points to (BS (ν)), and that
the end of the allocated region (BE (ν)) is n bytes from the beginning. We adopt a logical model of memory
where allocated blocks are considered to be infinitely far apart. We reflect this in our type system by refining
the output types of pointer arithmetic operations to stipulate that when a pointer x is incremented by a
value i the result has refinement

PAdd(ν, x, i) .= ν = x + i ∧ BS (ν) = BS (x) ∧ BE (ν) = BE (x)

4

which states that the result is an appropriately offset pointer into the same block. Finally, to specify the
safety of pointer dereferences, we stipulate that whenever a pointer x is dereferenced for reading or writing,
it has the bounds-safe type

{ν :ref(`, 0+1) | BS (ν) ≤ ν ∧ ν < BE (ν)}

Safety Verification To verify that the pointer dereference on line 5: is safe, we must verify that str has
the bounds-safe type; this will require determining that str = res+i. This is challenging for a type system,
as both str and i are mutated by the loop. Our system addresses this problem by using SSA renaming
to compute different types for the different versions of mutated variables. In the sequel, let xj be the SSA
name of x at line j:. Thus, from the malloc at line 2: our system deduces that res2 has type

{ν :ref(`1 , 0) | BLen(ν, n)} (1)

i.e., that res is a pointer to the start of a new location `1 whose size is n bytes. This same type is assigned
to str3. Next, our system uses the qualifiers Q and an SMT solver to infer that at line 5: i5 and str5 have
the respective types

{ν :int | 0 ≤ ν < n}
{ν :ref(`1 , 0+1) | PAdd(ν, res2, i5)}

Notice that these types are loop invariants. They hold the first time around the loop as initially i
is 0 and str is equal to res. The types are inductive as each loop iteration increments i and res.
Thus, our system uses an SMT solver to combine the above facts with 1 and deduce that at line 5:
BS (str5) ≤ str5 ∧ str5 < BE (str5), i.e., that str5 has the bounds-safe type and hence the pointer deref-
erences at line 5: of make string are safe.
Function Types Finally, note that make string returns the pointer res (i.e., res2) on line 6:. Thus, using
the type from (1) and the fact that the location `1 was freshly generated via malloc , our system concludes
that make string has the type:

∀`1 .(n :int)/emp→
{ν :ref(`1 , 0) | BLen(ν, n)}/`1 7→ 0+1 :char (2)

That is, the function takes an integer n and an empty heap (i.e., does not touch any pre-existing heap cells)
and returns a pointer to the start of a new char array of size n.

2.2 Heap-block Invariants

Next, we show how our system uses refinements to verify safety properties of blocks of data residing in
the heap. Consider the new string function shown in Figure 2. This function takes a parameter, n, and
produces a string structure encoding a string of length n. The string structure has two fields: len, the
length of the string, and str, a pointer to the contents of the string. The programmer intends that the fields
obey the following two invariants: (I1) the len field is non-negative, and (I2) the str field points to a char
array of size len. Note that these invariants do not hold at all points during the lifetime of the structure;
instead, the programmer establishes them on lines 1-4, and then calls the procedure init string that fills
in the string with the supplied character c.

Next, we show how our system precisely tracks updates to the structure, tolerating the early stages in
which the invariant does not hold, in order to verify the safety of the pointer dereferences within init string.
First, the malloc in line 1: creates a new location on the heap, `2 , and gives s the type ref(`2 , 0), stating
that it points into this location at offset 0. Initially, this location contains an 8-byte block (the size of the
string structure), and so at line 2: the heap is

`2 7→ uninitialized 8-byte block

5

In line 2:, we assign n to the len field of s, which creates a new binding in the heap for `2 at the offset
corresponding to the field len, namely 0, since len is the first element of the structure. Thus, at line 3: the
heap is

`2 7→0:{ν :int | ν = n}, uninitialized 4-byte block

Next, in line 3:, the call to make string creates a new location and assigns to str a pointer to the new
location, with the type shown in 2 (and 1). Thus, at line 4: the heap contains two locations

`1 7→0+1 :char

`2 7→0:{ν :int | ν = n}, uninitialized 4-byte block

In line 4:, the value of str is assigned to s→ str, which creates a binding at the corresponding offset in
`2 , namely 4, as the first field, len, was an int which is 4 bytes long. Thus, at line 5: the heap is

`1 7→0+1 :char

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | ν = str}

Finally, at line 5: we have the call to init string. At the callsite, our system uses the qualifiers in Q, and
the type of str to infer that the previously shown heap binding for `2 is subsumed by

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | BLen(ν, n)}

As the value at offset 0 equals n, the above block is subsumed by

`2 7→0:{ν :int | ν = n}, 4:{ν :ref(`1 , 0) | BLen(ν, @0)}

where n is replaced by @0, a name that denotes the value within the same block at offset 0. Finally, our
system uses the test at line 0: to deduce that n is non-negative at the callsite, so init string is called with
the heap h defined as

h
.= `2 7→0:{ν :int | 0 ≤ ν}, 4:{ν :ref(`1 , 0) | BLen(ν, @0)}

Note that, as the len field of a string structure is located at offset 0 and its str field is located at offset
4, the bindings for `2 capture exactly the structure invariants I1, I2 intended by the programmer. Moreover,
even though the invariants don’t hold everywhere, our system is able to use strong updates to establish them
at function call boundaries. Thus, our system infers that the function init string has the type

∀`1 , `2 .(s :ref(`2 , 0))/h → void/h

and, via reasoning analogous to that for make string, our system verifies the safety of array accesses in
init string.

2.3 Data Structure Invariants

In new string, s pointed to exactly one heap location, `1 , throughout the execution of the function. Conse-
quently, we could soundly perform strong updates to the block describing the contents of `1 ; this allowed us
to determine that the strings built by new string satisfied the desired invariants. Unfortunately, we cannot
soundly use strong updates when dealing with collections of locations.

Consider the function new strings shown in Figure 3. This function takes an integer parameter, n, and
creates a list of strings of lengths from 1 to n, all of which satisfy the invariants I1, I2. This is accomplished
by looping from 1 to n, allocating memory for a new string and assigning the pointer to this memory to s
(3:), initializing it as in new string (4:,5:), and inserting s into a list of strings (6:,7:,8:).

6

Note that s points to many different concrete locations over the course of executing the function; this is
in contrast to the previous functions, in which pointers only pointed to a single concrete location while the
function was executed. We formalize this distinction by saying that s points to an abstract location ˜̀. That
is, in our system, s has the Basic type ref(˜̀, 0), which states that it refers to the offset 0 within (one of)
many possible locations.

Observe that it is not sound to perform strong updates to an abstract location’s type. To see why,
suppose that we had strongly updated ˜̀ as we did when analyzing new string. Then we would assign ˜̀ a
block type as follows:

˜̀ 7→ 0:{ν :int | ν = i}, . . .

There are two problems with this type. First, every string has a different length, and yet we only assign a
single length for all strings. Second, at the end of the function, i has the value n, while none of the strings in
the list has length n! Thus, while we need strong updates to establish the desired invariants for each string,
we clearly cannot soundly perform strong updates on the types of abstract locations.

We solve this problem with the following crucial observation. Suppose that the code uses a pointer s to
access a collection of locations ˜̀. As long as we do not modify s or use other pointers to ˜̀, only one particular
concrete location from the set represented by ˜̀ can be modified at a time. Thus, when a pointer to ˜̀ is first
used, we can unfold the abstract location into a a fresh concrete location, `j , which inherits ˜̀’s invariant. As
long as ˜̀ is only accessed by a pointer to `j , we can soundly perform strong updates on `j ’s type. However,
as soon as another pointer to ˜̀ is used, the possibility of aliasing means we can no longer rely on `j ’s type to
be accurate. Thus, before we access an abstract location via another pointer of type ˜̀, we fold the concrete
location `j back into the collection by verifying that `j satisfies ˜̀’s invariants and removing it from the heap.
The other pointer then gets its own unfolded copy of the location, and can strongly update it, until it gets
folded back into the collection, and so on. Our system automatically places folds and unfolds in the code
(analogous to how they are placed in functional languages), in a manner that ensures that: (1) every heap
access occurs via a reference to a concrete location, (2) every abstract location has at most one copy in the
heap at any point in time. In this way, our system can soundly establish invariants about data structures in
spite of temporary invariant violation, even in the presence of aliasing.

We now illustrate the above mechanism using the code in Figure 3. We will say that, within the body of
the loop, s points to some concrete location, `j , which is an instance of ˜̀. We will use strong updates, as in
the previous examples, to verify that `j has the desired invariants, i.e., that

`j 7→ 0:{ν :int | 0 ≤ ν}, 4:{ν :ref(`2, 0) | BLen(ν, @0)}.

Finally, at the end of the loop — i.e., before we access another pointer into ˜̀ in the next iteration — we
fold the concrete location `j into the collection by ensuring that it satisfies ˜̀’s invariants, i.e., by stipulating
that at the end of of the loop, the block `j is a subtype of the block ˜̀. In this manner, our system performs
strong updates locally and infers using Q that at the end of the new strings, the heap is of the form

˜̀ 7→0:ref(˜̀, 0), 4:ref(˜̀1, 0)
˜̀1 7→0:{ν :int | 0 ≤ ν}, 4:{ν :ref(˜̀2, 0) | BLen(ν, @0)}
˜̀2 7→0+1 :char

Thus, our system infers that the function returns a list (˜̀) of pointers to string structures (`1) each of
which satisfy the invariants I1 and I2.
Plan. This concludes a high-level overview of Ltll. Next we formalize our core language (Section 3), and
static type system and state the type soundness theorem (Section 4). Next, we describe our experimental
evaluation via a set of challenging case studies (Section 5), and we conclude by surveying the diverse lines
of research to which Ltll is related (Section 6).

3 Language

In this section, we present the syntax and types of NanoC, a simple C-like language with integers and pointers.

7

a ::= Pure Expressions
| 〈w〉n integer constant
| ref(r, n) reference constant (internal)
| x variable
| @i offset variable
| a1 + a2 integer arithmetic
| a1 +p a2 pointer arithmetic
| a1 ∼ a2 pointer comparison
| F (a . . .) unint. application

e ::= Expressions
| a pure expression
| assert(x) assertion
| if a then e1 else e2 if-then-else
| let x = e1 in e2 binding
| letu x = [unfold ` 7→ `j] a in e location unfold
| [fold `j 7→ `] location fold
| ∗a pointer read
| ∗a1 := a2 pointer write
| malloc(` 7→ `j , a) allocation
| [t . . .] f(a . . .) function call

f ::= Functions
| fun(x . . .){e} : S definition

p ::= Programs
| e/˜̀ 7→ b . . . main expression
| letf f = f in p function binding

Figure 4: NanoC syntax

3.1 Syntax

The syntax of NanoC is shown in Figure 4. We give an overview of the language’s features below.
Pure Expressions We distinguish the pure expressions of NanoC, which do not access the heap, from its
potentially impure expressions. The pure expressions of NanoC, denoted by a include integer constants,
variables, integer and pointer arithmetic, integer and pointer comparisons, and assertions. NanoC uses
the C convention that nonzero values represent truth and all other values represent falsehood. Thus, the
generic arithmetic operator, denoted by +, includes comparisons and boolean operations. The uninterpreted
applications do not appear in programs; they are used solely in the refinements discussed in Section 3.2.
Note that pure expressions are guaranteed to evaluate to a value.
Expressions The impure expressions of NanoC, denoted by e, include the pure expressions, as well as if-
then-else expressions, let bindings, reads from and writes to memory, memory allocation, location folding and
unfolding, and function calls. Note that all bindings are to immutable variables — all mutation is factored
into the heap. Next, we examine location unfolding and function calls in more detail.
Location Fold and Unfold Our goal is to verify invariants which hold on in-memory data structures.
These invariants are represented as types attached to abstract heap locations, each of which may represent
several concrete (actual, run-time) heap locations. Verifying properties of the data at these abstract locations
in the presence of temporary invariant violation would seem to require performing strong updates on the
types of abstract locations; however, since a single abstract location can represent several concrete locations,
performing strong updates on an abstract location’s type is unsound.

However, at run-time a reference will only point to a single concrete location at a time. Thus, operations

8

` ::= Locations
| ˜̀ abstract location
| `j concrete location
| ρ location variable

i ::= Indices
| n singleton
| n+m lower-bounded sequence

T(R) ::= Type Skeletons
| {ν :〈n〉i | R} integer
| {ν :ref(`, i) | R} reference

B(R) ::= Block Skeletons
| i :T(R) . . . block

H(R) ::= Heap Skeletons
| emp empty heap
| H(R) ∗ ` 7→ B(R) location binding

S(R) ::= Function Schemas
| (x :T(R) . . .)/H(R) function type

→ T(R)/H(R)
| ∀ρ.S(R) location quant.

T ::= T(A) Refined Types
h ::= H(A) Refined Heaps
S ::= S(A) Refined Schemas

T̂ ::= T(Q) Liquid Types
ĥ ::= H(Q) Liquid Heaps
Ŝ ::= S(Q) Liquid Schemas

Figure 5: NanoC types

on abstract locations through a single reference will only affect a single concrete location. Intuitively, if we
can get access to this concrete location, we can soundly perform strong updates on it.

Our intuition follows a version control metaphor. Before using a pointer, we can “check out a copy” of its
abstract location, giving a concrete location for the pointer which has the same type as the abstract location
— a “working copy”. As long as the abstract location is accessed only through this pointer to the working
copy, it will be sound to perform strong updates on the type of the new concrete location. Finally, if it
becomes necessary to use another pointer to the same abstract location, we “check in” the concrete location
by checking that it satisfies the same invariant as the corresponding abstract location. The concrete location
is then discarded so that no further modification can be made to the working copy.

The “check out” operation is implemented via the letu x1 = [unfold ` 7→ `j] x2 in e construct, where
x2 is a reference to abstract location ˜̀. The expression creates a new concrete location corresponding to
˜̀; a reference to this new location is bound to x1 in e. The “check in” operation is implemented via the
[fold `j 7→ `] expression, which verifies that the concrete location corresponding to ˜̀ satisfies the same
invariant as ˜̀. These procedures and the distinction between abstract and concrete locations are discussed
in more detail in the context of their static typing rules in Section 4.1.
Function Calls Since functions take reference parameters, they can operate on arbitrary memory locations
containing data of arbitrary types. Thus, we allow function types to be quantified over the locations and

9

types they operate on and augment the function call expression with syntax for instantiating the quantified
locations and types: the expression [t . . .] f(x . . .) calls function f with parameters x . . ., instantiating the
location and type variables in the type schema of f with locations and types t
Programs A NanoC program, denoted by p, is a sequence of function definitions followed by a expression.
The result of running the program is the result of evaluating this expression using the preceding function
definitions.

3.2 Types

The types of NanoC are shown in Figure 5. NanoC has a system of refined base types, T , dependent stores,
h, and dependent function schemas, S.
Locations and References The NanoC locations, `, denote areas of the heap. We use ˜̀ to denote an
abstract location; abstract locations cannot be read from or written to. We use `j to denote a concrete
location; only concrete locations can be read from or written to. Every concrete location `j (resp. `i

j)
corresponds to some abstract location ˜̀ (resp. ˜̀i), and we require for soundness that there is at most one
concrete location corresponding to a particular abstract location at any given program point. We also use
location variables ρ to represent quantified locations in function schemas. We call references to abstract
locations abstract references and references to concrete locations concrete references.
Indices The integer and reference types of NanoC make use of indices, i, which are a shorthand notation for
single integers and arithmetic sequences. The index n represents the singleton offset set {n}; the index n+m

represents the sequence of offsets {n + lm}∞l=0. We write i+ to refer to an index which represents a sequence.
Base Types The base types, T , of NanoC include refined integer and reference types. We use 〈n〉i to
denote the type of n-byte integers x such that x ∈ i. We use ref(`, i) to denote the type of references to
location ` at an offset x ∈ i within that location. If τ is a type of either form, we can create the refined
type {ν :τ | a}, where a is a pure expression called a refinement predicate. Note that we can directly embed
refinement predicates as quantifier free formulas in the (decidable) theory of equality, linear arithmetic and
uninterpreted functions (EUFA). Intuitively, the type {ν :τ | a} denotes values v of type τ such that a[v/ν]
evaluates to true. We use the following type abbreviations: int abbreviates 〈W 〉−∞+1 , char abbreviates
〈1〉−∞+1 , and void abbreviates 〈0〉0. When it is unambiguous from the context, we use τ to abbreviate
the type {ν :τ | true}. Similarly, when the base type τ is clear from the context, we use {a} to abbreviate
{ν :τ | a}.
Blocks A block, b, represents the contents of a heap location. The types of the block’s contents at various
offsets are given by bindings i :T which state that the values at the offset(s) i have the type T . Within a
block, no two index bindings overlap.
Heaps A heap type, h, represents the contents of the run-time store, giving a block type to each location
in the heap. The contents of heap location ` are given by a binding to a block b, written ` 7→ b. We can
form the concatenation of two heaps h1 and h2 as h1 ∗ h2; the resulting heap contains all bindings present
in either h1 or h2. Our heaps enjoy the following properties: (1) no location may be bound twice in a heap,
and (2) every abstract (resp. concrete) location in the heap has at most (resp. exactly) one corresponding
concrete (resp. abstract) location in the heap. We say that a run-time heap satisfies a heap type if every
value in the heap has the type specified by the corresponding heap type binding.
Function Schemas We combine refined base types and heap types to form dependent function types and
schemas S. A dependent function type consists of an input and output portion. The input portion of a
dependent function is a pair (xi :Ti . . .)/h of a dependent tuple giving the input types and the input heap,
i.e., the heap contents required to call the function. The output portion of a dependent function is a pair
T/h, called a world, containing the return type of the function and the output heap, i.e., the heap contents
after the function returns. The types in the output world of a dependent function type may refer to variables
bound in the input tuple.

Since functions can take reference parameters, they may operate on arbitrary heap locations containing
data of arbitrary types. Thus, we allow function types to be quantified over heap location variables ρ
representing the unknown locations and type variables α representing unknown types, producing function
schemas.

10

3.3 Operational Semantics

We now present the semantics of NanoC, beginning with the representation of run-time state and then
describing the small-step reduction rules.
Run-Time State Figure 6 shows the different elements that comprise the program state at run-time. A
run-time value is either an n-byte integer value m, denoted 〈n〉m, or a reference to offset n of heap location
`j , denoted ref(`j , n). Each run-time location is represented by a run-time block which maps each natural
number offset n to either a run-time value v, or Used , indicating that the offset is occupied by some value.
We use contexts and redexes to represent the next expression to be evaluated.
Small-Step Semantics Figure 7 shows the reduction rules that formalize the small-step operational se-
mantics of NanoC programs. The rules use the following auxiliary definitions:

Size(〈n〉m) .= n

Size(ref(`j , n)) .= W

Raw(b) .= λm. if b(m) = T then random T> else Used
Fit(b, n, v) .= b(n) = v′ ∧ Size(v) = Size(v′)

Upd(b, n, v) .= b[n 7→ v][n + 1, . . . , n + Size(v)− 1 7→ Used]

Size(v) is the number of bytes occupied by the value v. sizeof(T) is the number of bytes occupied by values
of the type T ; this is well-defined since all values of a type have the same size. Raw(b) returns a fresh
run-time block whose contents are randomly-chosen items of the types specified in b. Fit(b, n, v) checks
whether there is enough room to write the value v at offset n within the run-time block b. Upd(b, n, v) is the
updated run-time block obtained by writing the value v at offset n within the run-time block b. Intuitively,
the updated block stores the value at the offset n and marks the subsequent Size(v)− 1 offsets as Used .

The reduction rules of Figure 7 are parametrized over a mapping from function names to definitions,
Φ, used in rule [R-Call] to obtain the body of the function. The majority of the remaining rules are
straightforward; we will only discuss a few. The rules [R-If-True], [R-If-False], and [R-Assert] use
the C convention that nonzero values represent truth and all other values represent falsehood. The rule
[R-Malloc] creates a new heap location, `j , corresponding to the newly-allocated memory and marks the
first m bytes as unused using Raw . The rule [R-Read] returns the value at offset m of location `j , if it
exists. The rule [R-Write] writes value v to offset m of location `j if it fits, i.e., either the space the value
will occupy is empty or contains another value of the same size.

4 Type System

In this section, we present the typing rules of NanoC, outline a proof of their soundness, and give an overview
of how our system enables inference.

4.1 Typing Rules

We begin with a description of NanoC’s type environments, rules for type well-formedness, and subtyping.
We then discuss several of the most interesting typing rules.
Environments Our typing rules make use of two types of environments: local environments and global
environments. A local environment, Γ, is a sequence of type bindings x :T and guard predicates e. The
former are standard; guard predicates capture the results of conditional guards under which an expression is
evaluated. A global environment, Φ, is a sequence of bindings f :S mapping functions to their type schemas.

We assume that suitable renaming has been performed so that no name is bound twice in an environment.
An environment is well-formed if each bound type is well-formed in the prefix of the environment that precedes
the binding.

Γ ::= ε | x :T(R); Γ | a; Γ (Local Environment)
Φ ::= ε | f :S(R); Φ (Global Environment)

11

v ::= Values
| 〈n〉m integer
| ref(r, n) reference

b ::= N → Used ∪ v Run-time Blocks

h ::= Run-time Heaps
| emp empty heap
| h ∗ `j 7→ b location binding

C ::= Contexts
| •
| C + a
| v + C
| C +p a
| v +p C
| C ∼ a
| v ∼ C
| assert(C)
| malloc(` 7→ `j , C)
| if C then e1 else e2

| let x = C in e
| letu x = [unfold ` 7→ `j] C in e
| ∗C
| ∗C := e
| ∗v := C
| f(. . . , C, . . .)

r ::= Redexes
| v1 + v2

| v1 +p v2

| v1 ∼ v2

| assert(v)
| if v then e1 else e2

| let x = v in e
| letu x = [unfold ` 7→ `j] v in e
| [fold `j 7→ `]
| f(v . . .)
| ∗v
| ∗v1 := v2

| malloc(` 7→ `j , v)

Figure 6: Run-time Values, Heaps, Contexts and Redexes

Well-Formedness Judgments The judgments of Figure 8 ensure that types, heaps, and worlds are well-
formed in local environments Γ and heaps h. Intuitively, a type is well-formed in a local environment Γ if
its refinement predicate a is a Boolean formula in Γ, written Γ ` e. Additionally, we require that reference
types point to heap locations present in h and integer types have non-negative size.

A block is well-formed if no two index bindings overlap and each type is well-formed with respect to
the local environment and preceding indices. We distinguish between concrete blocks, bound to concrete
heap locations, which must have (pure) refinements over immutable variables bound in the environment,
and abstract blocks, bound to abstract heap locations, which have refinements which may additionally use

12

offset names (e.g., @0) to refer to values at other offsets within the block. We disallow offset names in the
refinements for concrete blocks for two reasons. First, they are unnecessary, as we can use names bound in
the environment to precisely describe a particular location. Second, they are problematic, as the values at
the offsets can be changed by strong updates, thus invalidating the refinements.

A heap is well-formed if each block is well-formed, no location is bound twice, each abstract location
has at most one corresponding concrete location, and each concrete location has a corresponding abstract
location. Note that we check blocks bound to abstract locations using abstract block well-formedness and
blocks bound to concrete locations using concrete block well-formedness.

A schema is well-formed if all parameters are well-formed with respect to the previous parameters and
the input heap, the input heap is well-formed with respect to the parameters, and the output world is also
well-formed with respect to the parameters.
Subtyping Judgments The subtyping judgments of NanoC are shown in Figure 10. The rules use impli-
cation checks over the refinement predicates. To ensure decidability, we embed the implication check into a
decidable logic of Equality, Linear Arithmetic and Uninterpreted Functions (EUFA). We write [[a]] for the
embedding of a pure expression a into EUFA. We lift the embedding to environments as follows:

[[x :{ν :τ | a};Γ]] .= [[a[x/ν]]] ∧ [[Γ]]
[[a; Γ]] .= [[a]] ∧ [[Γ]]

[[ε]] .= true

Most of the rules in Figure 10 are straightforward. Rule [<:-NullPtr] is used to coerce the integer
value 0 into an arbitrary pointer type, allowing the use of NULL pointers. Rule [<:-Abstract] allows a
concrete pointer to be treated as abstract.
Covariant Heap Subtyping Our use of the covariant heap subtyping rule [<:-Heap] may seem unsound
at first blush. Typical type systems are flow-insensitive. In such systems, a reference has a single type
over the entire scope in which it is defined, and hence, using covariant subsumption to unsafely “upcast”
reference types can cause unsoundness. In our setting, covariant subtyping is sound as we treat the heap in
a flow-sensitive manner. We assign different types to the current heap before evaluating an expression and
the resulting heap after the expression has been evaluated. This allows a heap location to be updated to
reflect a change in the type of the stored value, avoiding the aforementioned unsoundness.
Pure Typing Judgments The typing judgments for pure expressions are shown in Figure 9. The rules are
quite standard [23, 12, 26, 2]. Note that the refinement predicates for these expressions precisely track the
value of the expression. The only non-trivial rule is [T-Ptr-Arith] which handles pointer arithmetic. The
refinement for the result uses the refinement PAdd(ν, x1, x2) (Section 2) which states that the value obtained
by adding an offset x2 to a base pointer x1 yields an appropriately offset pointer into the same block. Recall
that BS (ν) (resp. BE (ν)) denotes the address where the block referred to by ν begins (resp. ends).
Typing Judgments The typing judgments for expressions and programs are shown in Figures 11 and 12.
The program typing rules are straightforward. The expression typing judgment Γ, h ` e : T/h′ states that,
in local environment Γ, if the heap initially satisfies h, then evaluating e produces a value of type T and a
heap satisfying h′. The majority of the rules are straightforward; the most interesting rules are those that
deal with memory access.

4.2 Type Checking Memory Operations

Next, we discuss the rules for memory allocation, heap operations, function calls, and location unfolding.
The key idea that enables our system to verify and infer invariants about in-memory data structures in the
presence of temporary invariant violation is our distinction between concrete locations and abstract locations.
Thus, to better understand the rules for memory operations, we begin with a more thorough description of
abstract and concrete locations.
Concrete Locations are names that refer to exactly one physical memory location. For example, a single
item in a linked list has one physical location and thus can be identified with a concrete location. The block
bound to a concrete location describes the current state of the contents of exactly one physical location.

13

Abstract Locations are names that refer to zero or more concrete locations. For example, all items in a
linked list may share the same abstract location, although each item is at a different concrete location. The
block bound to an abstract location is an invariant that applies to all elements which share that abstract
location.

Since we wish to verify data structure invariants in spite of temporary invariant violation, we will allow
memory to be accessed only through concrete locations. This will enable our type system to perform strong
updates to the types of concrete locations, providing robustness with respect to temporary invariant violation.
Because of aliasing, however, we need a strategy to handle pointers to abstract locations.
Strategy for Aliasing We employ a two-pronged strategy for handling aliasing. First, as long as only a
single pointer to an abstract location is used, we can be assured that only one corresponding concrete location
is being accessed. We will use our location unfold operation to obtain a concrete location corresponding to a
pointer’s referent. As long as the abstract location is only accessed through this “unfolded” pointer, we can
safely perform strong updates on the new concrete location. Second, if we must use another pointer to access
the abstract location, we can no longer be assured that a single concrete location will be updated. When
this happens, we will use the location fold operation to ensure that the contents of the concrete location
created earlier meet the abstract location’s invariant, disallow further use of the unfolded pointer (without
another unfold), and allow the new pointer to be soundly unfolded.

In the following, we describe the typing rules for the key operations of location unfolding and folding
and demonstrate how they allow us to soundly perform strong updates. We then describe the remaining
heap-accessing operations: memory allocation, heap read and write, and function calls.
Unfolding The expression letu x1 = [unfold ` 7→ `j] x2 in e, which “acquires” a concrete pointer to the
location ˜̀ that x2 points to, is typed by rule [T-Unfold]. The rule first looks up x2 in Γ to determine where
it points. The block b bound to this location is located in the initial heap, h, to find the invariant satisfied
by the abstract location. With some modification, this same block is bound to a new concrete location, `j ,
to ensure that this concrete location initially satisfies the same invariants as the abstract location did.

The modification consists of a sequence of substitutions. The block b may contain types which reference
previous elements by their indices (i.e., may contain types containing names like @i). Such types only have
meaning in the context of the block where the indices are bound; if the type is extracted from the block —
by typing a read operation, for example — it will be meaningless, since the indices are not bound to types
in the environment. To give these types meaning outside of the block, we create fresh variable names xi

for each non-sequence index i and extend the environment with appropriately-substituted bindings for these
names. Each concrete location has a “selfified” refinement stating that the value at each index i is equal to
the corresponding name xi. Note that sequence indices are not bound to selfified types, because a sequence
index binding represents multiple data values.

Finally, a pointer to `j is bound to x2 in the body e. Well-formedness checks ensure that no other
concrete location corresponding to ˜̀ exists and that the new bindings do not escape the scope of the body.

Note that the pointer being unfolded must be non-null. Because null pointers are treated as references
to arbitrary, possibly uninhabited, abstract locations with arbitrary invariants, allowing a null pointer to be
unfolded would allow the introduction of arbitrary predicates into the environment, leading to unsoundness.
By allowing only non-null pointers to be unfolded, we ensure that we only unfold pointers to concrete
locations which had previously been allocated, initialized, and folded. Such pointers are guaranteed to
genuinely satisfy the invariants of their abstract locations and so there is no risk of unsoundness in unfolding
them.
Folding The expression [fold `j 7→ `], which “releases” the concrete location currently assigned to ˜̀,
is typed by rule [T-Fold]. The rule uses subtyping to check that the concrete location `j satisfies the
invariant specified by its corresponding abstract location ˜̀ and removes concrete location `j from the output
heap, preventing further use of pointers to `j .
Memory Allocation The expression malloc(` 7→ `j , x) is typed by rule [T-Malloc], which creates a
new concrete location corresponding to newly-allocated memory. The new concrete location corresponds to
abstract location ˜̀, which is mapped to block b, giving the desired invariant for the new concrete location.
This invariant is not yet established for the concrete location, which represents freshly-allocated memory;
thus, the concrete location is mapped to b>, which is b with all refinements set to true, and it is up to the

14

caller to establish the invariant. The expression returns a reference to the beginning of the concrete location
(index 0); the refinement on this reference states that the reference is a safe pointer to a block of size x,
where safe is defined as

Safe(ν) .= ν 6= 0 ∧ BS (ν) ≤ ν < BE (ν)

The uniqueness of concrete location bindings within the heap is ensured using heap well-formedness; i.e., if
there is an active concrete location corresponding to the abstract location being allocated, it must be “folded
up” before malloc is invoked.
New Abstract Locations Abstract locations are added to the heap with the rule [T-HeapExt], which
typechecks an expression in a heap extended with a new abstract location. Because the new abstract location
does not yet describe any concrete locations, its assigned block may be arbitrary; our only requirement is
that its addition results in a well-formed heap. While this rule is not syntax-directed, it is only necessary
at the beginning of a function to introduce the abstract locations used within the function. ♣ pmr: Killing
T-HeapExt, at least temporarily♣
Pointer Read The expression ∗x is typed by rule [T-Read]. This rule ensures that the pointer is valid; if
so, the type of the read is given by the type bound in the heap at the reference’s location, index pair. The
heap is left unaltered.
Pointer Write The expression ∗x1 := x2 is typed by rules [T-Write-Field] and [T-Write-Array]. If
the reference identifies exactly one location within a block — i.e., it has a singleton index n — the rule
[T-Write-Field] can be used to return a new, strongly-updated heap where the type of the referent has
been updated to the type of the value being assigned. Otherwise, a strong update is unsound; the rule
[T-Write-Array] is used to ensure that the new value has the same type as the previous value. Note
that we could use fold/unfold to allow strong writes to arrays, but we eschew this for simplicity. Both rules
ensure that the dereferenced pointer is valid.
Function Call The expression [t . . .] f(y . . .) is typed by rule [T-Call], which is inspired by the modular
“footprint”-based frame rule from separation logic. This rule splits the initial heap into two portions: hm,
the portion of the heap which is modified by the function, and hu, the portion of the heap which is left
unmodified by the function. To ensure soundness, we check that hm and hu are individually well-formed;
this prevents placing a concrete location in hu and its corresponding abstract location in hm, allowing the
function to unsoundly unfold an already-unfolded location. The rule also generates a substitution mapping
formal (type) parameters to actual (type) parameters. This substitution is used to check that the actual
parameters and heap are subtypes of the formal parameters and heap. The result of the call is the return
type and the function’s output heap, both with the actual parameters substituted for the formals. The
resultant output heap is joined with the unmodified portion of the input heap to obtain the caller’s heap
after the function returns.

4.3 Type Soundness

We ensure the soundness of our type system by proving the standard progress and preservation theorems.
We state our soundness theorems with respect to a standard call-by-value small-step semantics, which has
been omitted for brevity; the details can be found in [25]. Our transition relation is parametrized over a
global environment Φ mapping functions to their definitions. We denote the single step transition relation
by ↪→Φ and use ↪→∗

Φ to denote its reflexive, transitive closure.

Proposition 1. (Substitution)

If Φ,Γ, h ` C[r] : T ∗/h∗

Φ,Γ, h ` r : Tr/hr

r/h ↪→Φ e′/h′

then Φ,Γ, h′ ` e′ : Tr/hr

Φ,Γ, h′ ` C[e′] : T ∗/h∗

15

Proposition 2. (Preservation)

If Φ, ∅, h ` e : T ∗/h∗

e/h ↪→∗
Φ e′/h′

then Φ, ∅, h′ ` e′ : T ∗/h∗

Proposition 3. (Progress) If Φ, ∅, h ` e : T ∗/h∗ and e is not a value, then there exists a transition
e/h ↪→Φ e′/h′.

Type soundness implies the following safety properties: (1) all memory accesses occur on non-null pointers
that are within the bounds of their allocated memory regions, and (2) no assertion failures occur at runtime.

4.4 Type Inference

Next, we give a brief overview of type inference in NanoC. Type inference occurs in three phases: the first
infers Basic types for the program; the second inserts location fold and unfold operations where necessary;
and the third infers refinement types using liquid type inference.
Basic Type Inference In previous work [26, 18], we based our type inference techniques on the rich type
information provided by ML’s type system. Because C programs are essentially untyped, we first use a type
inference pass to assign rich Basic types to local variables and expressions and to discover the types of the
heap’s contents. The user provides the Basic type schemas of all functions in the source program. These
schemas are then used to infer Basic types for local variables, expressions, and heap contents as follows:
First, local variables and expressions are assigned types where the as-yet-unknown indices and locations are
represented by variables. A system of subtyping and heap location inclusion constraints over these types is
generated from the source program in a syntax-directed manner. Next, these constraints are simplified to a
set of location equality (aliasing), index inclusion, and heap location inclusion constraints over the unknowns.
Finally, the simplified constraints are solved using a fixed point algorithm to obtain solutions for the heap
contents and the unknown index and location variables, giving the types of the local variables, expressions,
and heap contents in the body of the function.
Location Fold and Unfold Inference Next, our system automatically inserts location fold and unfold
expressions in order to ensure that every dereference is on a concrete pointer and that only one concrete
location is unfolded at a time, as required by our typing rules. To do this, our system visits each block in the
CFG of each function. Our system traverses the statements in the block in order, maintaining a list of which
concrete location, if any, is unfolded for each abstract location. At the beginning of the block, there are no
unfolded concrete locations; the sole exception is the entry block of a function, which may take a pointer to
an unfolded location. At each dereference, the our system checks if the dereferenced pointer points to the
currently-unfolded concrete location for its abstract location. If not, our system inserts a fold to fold up the
old concrete location, if any, and inserts an unfold operation on the dereferenced pointer, creating a new
active concrete location which is assigned to this pointer. At the end of the block, all locations are folded.
Liquid Type Inference Finally, we use liquid type inference to infer refinement types and thus automati-
cally discover data structure invariants. This step is similar to previous work [26, 18]; we give a brief outline
here. As before, we observe that our type checking rules encode an algorithm for type inference and so we
perform type inference by attempting to produce a type derivation. At various points in the derivation, we
encounter types (resp. heaps, schemas) which cannot be synthesized directly from the form of the expression
and the current environment but must be inferred. We insist that these types (resp. heaps, schemas) be
liquid, denoted T̂ (resp. ĥ, Ŝ), i.e., their refinements must be liquid refinements consisting of a conjunction
of logical qualifiers. Whenever we encounter a type which must be inferred, we create a new template type,
which is the Basic type inferred earlier where a fresh variable is used to represent the as-yet-unknown liquid
refinement. We generate subtyping constraints over the template types using the subtyping premises in our
type rules; the subtyping rules are used to reduce these constraints to simple implication constraints between
refinement expressions and unknown refinement variables. These constraints are solved via abstract inter-
pretation to yield a liquid refinement for each refinement variable. Replacing each variable with its solution
yields a refinement typing for the program.

16

5 Evaluation

We implemented our type system in Csolve, a prototype static verifier for C programs. Csolve takes as
input a C source file, a file containing the Basic type (headers) for each function in the source file, and a set
of logical qualifiers, which Csolve uses to perform liquid type inference. We have deferred the generation
of headers from C type headers to future work. Csolve outputs the inferred liquid types of functions, local
variables, and heap locations and reports any refinement type errors that occur.

We applied Csolve to several challenging benchmarks, drawn from [17], [19], and the example of Sec-
tion 2, which illustrate common low-level coding idioms. The results are shown in Figure 13. In each
case, Csolve was able to reason about complex invariants and memory access patterns to statically verify
safety.We explain several of the benchmarks below.
String Lists Using Csolve, we verified the safety of a program implementing a C idiom for linked list
manipulation which is particularly common in operating system code [7] and which requires precise reasoning
about pointer arithmetic. Recall the example of Section 2, which contained functions for creating and
initializing strings and for creating lists of strings. We add to that example the function string succ,
shown below, which takes a pointer to the str field of a stringlist and returns the next string in the
list. (Explicit null checks checks have been omitted for brevity) This function is used in init succ, which
creates a list of several strings and initializes the second one using init string. Csolve precisely tracks
pointer arithmetic to verify init succ, by proving that that the input to init string has the type from
Section 2.

slist *string_succs(string **s) {
1:slist *parent = (slist **)s - 1;
2:return parent->next->s;
}

void init_succ() {
slist *sl;
string *succ;
sl = new_strings(3);
succ = string_succ(&sl1->s);
init_string(succ, ’\0’);

}

The string succ function expects an argument s of type ref(˜̀1, 4) in a heap of the form

˜̀1 7→0:ref(˜̀1, 0), 4:ref(˜̀2, 0)
˜̀2 7→0:{ν :int | 0 ≤ ν}, 4:{ν :ref(˜̀3, 0) | BLen(ν, @0)}
˜̀3 7→0+1 :char

From Section 2, we know that the return type of new strings provides a pointer of this type, assigned to
sl, in the appropriate heap. Thus, we begin in string succ with the assignment to parent on line 1:. Since
s is cast to a stringlist∗, which is 4 bytes long, and decremented, the type of the pointer assigned to
parent is ref(˜̀1, 0). Continuing on line 2:, the type of parent→next is the same, since the next pointer
points to a structure of the same type. Finally, the type of parent→next→str is given by the type at offset
4 of ˜̀1, since str is the second item in the stringlist structure. Thus, string succ returns a pointer of
type ref(˜̀2, 0) — a pointer to a string— in a heap of the form shown above. This pointer is passed to
init string; as the pointer and heap meet the required invariants, Csolve verifies safety. Thus, Csolve
precisely reasons about pointers and in-heap data structures and automatically verify this example using the
qualifiers Q from Section 2.
Audio Compression Using Csolve, we verified the memory safety of routines for ADPCM audio encoding
and decoding. The encoder, outlined below, takes as input an audio stream consisting of an array of 16-bit
samples and outputs a compressed stream using 4 bits to represent each sample. The encoder relies on
complex loop invariants to ensure memory safety.

void encoder (int nsamples, short *in0, char *out0){
short *in = in0;
char *out = out0;

17

int bufferempty = 1;
char buffer;
for (int len = nsamples; 0 < len; len--){

Read *in++;
if (!bufferempty) {

//Write to buffer;
*out++ = buffer;

} else {
//Write to buffer;

}
bufferempty = !bufferempty;

}
if (!bufferempty) *out++ = buffer;

}

The encoder takes three parameters: nsamples, the total number of samples in the input; in0, a pointer
to the start of the input buffer, an array of 16-bit short values; and out0, a pointer to the output buffer,
an array of 8-bit char values. The number of elements in the input buffer is twice the number of elements
in the output buffer. The pointer in, initially set to in0, is used to read data from the input buffer; the
pointer out, initially set to out0, is used to write data to the output buffer. The for loop iterates through
each element of the input buffer. At each iteration, the loop reads 16 bits (a single short value) from the
input buffer and advances in. Each iteration also computes a new 4-bit value for the output; however, since
out is a char pointer, the encoder must write 8 bits at a time. Thus, the encoder buffers output into a local
char value and only writes to out every other iteration. The flag bufferempty indicates whether to write
to and advance out. The final if writes to the output in case there is a value in the buffer which has not
been written, i.e., if there are an odd number of samples in the input.

Csolve verifies the safety of dereferences of in and out, by inferring that in and out have the respective
types

{ν = in0 + nsamples− len}
{2 ∗ (ν − out0) = nsamples− len− (1− bufferempty)}

which encode the crucial loop-invariants that relate the values of the respective pointers with the number of
iterations and the flag. By inferring similar invariants Csolve verifies the decoding routine.
Virtual Memory Using Csolve, we verified the array safety of pmap, a 317-line program implementing
a virtual memory subsystem of the JOS OS kernel [17] that comprises functions for allocating and freeing
virtual address spaces, allocating and freeing a physical page backing a virtual page, and mapping two virtual
pages onto the same physical page.

To ensure the safety of array accesses in pmap we must precisely reason about the values contained in
the collection of environment structures that represents virtual address spaces. Each environment includes
a mapping from virtual pages to physical pages, env pgdir, represented as an array of fixed length. Each
index of env pgdir is mapped to either the physical page allocated to the virtual page or -1 if no physical
page has been allocated. Environments are joined together in doubly-linked fashion to form a list of virtual
address spaces.

The physical address space is described by an array of size N , pages. Operations like allocating and
freeing physical pages use entries from an env pgdir field to index into pages. Thus, to prove array safety, we
must verify that the items in every env pgdir in every environment are valid indices into pages. Formally,
we must verify that every pointer to an environment points to a heap location ˜̀ whose description is

˜̀ 7→ 0:ref(˜̀, 0); 4 :ref(˜̀, 0); 8+4 :{ν :int | ν < N}

where the pointers at offsets 0 and 4 are pointers to the next and previous environments, respectively, and
the integers at indices in 8+4 are the entries in env pgdir. Note that we prove that every entry in env pgdir
is non-negative, as -1 is used to indicate an unused virtual page. However, every item in env pgdir is verified
to be non-negative before use as an index into pages.

Using Csolve, we were able to verify that the above heap typing holds and thus determine that every
array access in pmap is within bounds. This is challenging because the majority of array accesses are indirect,
using an entry in an env pgdir field to index into an array of physical page data. This requires precise
reasoning about the values of all elements contained in an in-heap data structure. Further, array offsets are

18

frequently checked for validity in a different function from the one in which they are used to access an array,
requiring flow-sensitive reasoning about values across function boundaries. Nevertheless, Csolve is able to
verify the safety of all array accesses in pmap.

6 Related Work

Static Dependent Types were first applied to formal verification in the context of mechanized proof as-
sistants.In the late nineties there were projects that defined programming languages with restricted forms of
dependent types. DML [29] showed how decidable checking could be achieved through the use of indexed-
types and using a decidable logic for the indices. DML is a high-level language, and moreover, requires the
user to provide manual annotations describing the types of recursive procedures and inductive datatypes.
Ats [32] combines linear types with stateful-views and explicit programmer-provided proof terms to spec-
ify and verify safety properties of an imperative language. In contrast to the above, we have previously
demonstrated [26, 18] that for high-level languages the abstract interpretation enabled by Liquid Types can
drastically reduce the annotations and automate verification. Our work brings those benefits to the low-level,
imperative setting.
Dynamic Dependent Types offer an alternative to static verification where the hardest checks are deferred
to run-time. Prior work [23, 12] explores dynamic and hybrid refinement types for higher-order functional
languages. The Deputy system [8] implements hybrid dependent types for C. The Deputy type system
was designed to track the information required to place appropriate run-time checks (assert statements) in
the program. Thus, unlike Ltll, which is designed for static verification, the Deputy type system is flow-
and path- insensitive, and oblivious to aliasing, heap updates and data structures. Further, unlike Ltll,
the Deputy type system only supports a form of local type inference; users must write dependent type
annotations for procedures. Once Deputy has placed the assert statements in the code, a precise static
verifier like Csolve can discharge the checks at compile time.
Location-Sensitive Types encode pointer relationships within the type system and use the tracked in-
formation to determine the points where strong updates are possible. Ltll locations are inspired by the
way in which locations are used to enable strong updates in [27], a system that was designed to type the
machine code generated from a high-level language. Consequently, this system makes the assumption that all
locations on the heap are concrete, which is not valid in the setting of low-level systems code. Our technique
of using unfold and fold to allow temporary strong updates within an aliased collection is closely related to
the notions of restrict [14] and focus [10]. The former combines fold and unfold into a single lexically scoped
operation, but this critically relies upon the existence of a high-level new operation that creates fully ini-
tialized locations. In contrast, Ltll requires a fold to add fresh locations returned by malloc to collections
after they have been initialized. In this sense, the fold operation is a special case of the adopt operation [10]
that can be automatically inserted into low-level code without any programmer annotation. Finally, none of
the above systems address the issue of pointer arithmetic; our approach of using blocks composed of fixed
and periodic offsets is similar to that adopted by [28] in the context of dataflow-based alias analysis. Note
that while tracking pointer arithmetic precisely is not essential to establish memory safety [9], it is essential
to ensure the stronger invariants over fields that are inferred and verified by Ltll.
Floyd-Hoare Logic based verification techniques encode the entire machine state as monolithic logical
predicates. These approaches are extremely expressive and precise, since arbitrarily complex specifications
for collections can be encoded using universally quantified logical formulas. For the same reason, they
can require significant manual intervention. Verification proceeds by composing the user-provided loop-
invariants, pre- and post-conditions with the code to compute verification conditions. When possible, these
conditions are discharged automatically [13, 7]. However, due to the brittleness of automatic quantified
reasoning, one must sometimes resort to interactive theorem proving [21, 31, 11]. Ltll uses the underlying
type system as a robust algorithm for quantifier generalization and instantiation, refinement predicates to
achieve precision, and abstract interpretation to automate inference.
Abstract Interpretation based approaches to static verification fall into two categories. The first category
includes extremely precise techniques for analyzing control-sensitive properties of individual variables [3, 1,
15, 5, 30, 16] which typically handle the heap very imprecisely. The second category includes extremely

19

precise shape analyses that can characterize the heap using abstract domains tailored to the data-structures
being analyzed [20, 24, 4, 6, 22]. In contrast, Ltll is an automatic technique that uses a combination of
low-level types and predicate abstraction to compute invariants for data stored inside collections without
using information about the shape of the underlying structure. In future work we would like to investigate
ways to improve the precision of Ltll by enriching it with shape (or reachability) information, which would
allow us to determine when a location has been removed from a collection.

References

[1] T. Ball and S.K. Rajamani. The SLAM project: debugging system software via static analysis. In
POPL. ACM, 2002.

[2] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for secure
implementations. In CSF, 2008.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival. A
static analyzer for large safety-critical software. In PLDI, pages 196–207. ACM, 2003.

[4] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape analysis by means of
bi-abduction. In POPL, 2009.

[5] S. Chaki, J. Ouaknine, K. Yorav, and E.M. Clarke. Automated compositional abstraction refinement
for concurrent C programs: A two-level approach. In SoftMC, 2003.

[6] B. E. Chang and X. Rival. Relational inductive shape analysis. In POPL, pages 247–260, 2008.

[7] J. Condit, B. Hackett, S. Lahiri, and S. Qadeer. Unifying type checking and property checking for
low-level code. In POPL, 2009.

[8] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. Dependent types for low-level program-
ming. In ESOP, 2007.

[9] J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. Ccured in the real world. In PLDI,
pages 232–244, 2003.

[10] M. Fahndrich and R. DeLine. Adoption and focus: Practical linear types for imperative programming.
In PLDI. ACM, 2002.

[11] J-C. Filliâtre and C. Marché. The why/krakatoa/caduceus platform for deductive program verification.
In CAV, 2007.

[12] C. Flanagan. Hybrid type checking. In POPL. ACM, 2006.

[13] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In PLDI, 2002.

[14] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI, pages 1–12. ACM, 2002.

[15] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In POPL 04.
ACM, 2004.

[16] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed invariants inside
the predicate abstraction and refinement loop. In CAV, pages 137–151, 2006.

[17] JOS. Jos: An operating system kernel. http://pdos.csail.mit.edu/6.828/2005/overview.html.

[18] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure verification. In PLDI, pages
304–315, 2009.

20

[19] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO, 1997.

[20] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In SAS, LNCS 1824,
pages 280–301. Springer, 2000.

[21] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: Reasoning with the
awkward squad. In ICFP, 2008.

[22] H. H. Nguyen, C. David, S. Qin, and W-N. Chin. Automated verification of shape and size properties
via separation logic. In VMCAI, 2007.

[23] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with dependent types. In IFIP TCS,
pages 437–450, 2004.

[24] Z. Rakamaric, J. D. Bingham, and A. J. Hu. An inference-rule-based decision procedure for verification
of heap-manipulating programs with mutable data and cyclic data structures. In VMCAI, 2007.

[25] P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types: Technical report.
http://pho.ucsd.edu/liquid.

[26] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.

[27] D. Walker and J.G. Morrisett. Alias types for recursive data structures. In Types in Compilation 2000,
pages 177–206. Springer-Verlag, 2000.

[28] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for c programs. In PLDI, 1995.

[29] H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, pages 214–227, 1999.

[30] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In POPL, pages 351–363,
2005.

[31] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data structures. In PLDI,
pages 349–361, 2008.

[32] D. Zhu and H. Xi. Safe programming with pointers through stateful views. In PADL, pages 83–97.
Springer, 2005.

A Soundness of Type Checking

♣ pmr: TODO: need to work out location substitution in detail♣
In this section we prove the soundness of our type system.

A.1 Definitions

Definition 1. We define the semantics of the C arithmetic operations on values v1, v2 as follows:

• [[=]](v1, v2) ↪→ 〈W 〉0 iff v1 6= v2.

• [[6=]](v1, v2) ↪→ 〈W 〉0 iff v1 = v2.

Definition 2. We define the sizeof(T) operation as

sizeof(〈w〉i)
.= w

sizeof(ref(`, i)) .= W

21

Definition 3. (Embedding) We define [[]] to be a map from expressions and environments to formulas
in a decidable logic such that for all Γ, e1, e2, if Γ ` e1 : int, Γ ` e2 : int, Valid([[Γ]] ∧ [[e1]] ⇒ [[e2]]), then
Γ ` e1 ⇒ e2.

Definition 4. (Block Extents) If h ≡ h1 ∗ r1 7→ b1 is a run-time heap, then

• BS (b1),BE (b1) ∈ N

• BS (b1) < BE (b1)

• If h1 ≡ h0 ∗ r2 7→ b2, then BE (b2) ≤ BS (b1).

Definition 5. (Reference Extents) If h ≡ h0 ∗ r 7→ b is a run-time heap, then

• BS (ref(r, n)) .= BS (b)

• BE (ref(r, n)) .= BE (b)

Definition 6. (Reference Addresses) If h ≡ h0∗r 7→ b is a run-time heap, then ref(r, n) ≡ BS (ref(r, n))+n.

Definition 7. (Location Map) A location map γ : RLoc → Loc is a map from run-time locations to heap
type locations.

Definition 8. (Location Map Well-Formedness) A location map γ is well-formed with respect to heap h
and heap type h1, written

h 7→ h1 ` γ

iff

1. Dom(γ) = Dom(h)

2. Rng(γ) ⊆ Dom(h1)

3. If γ(r) = `j and γ(r′) = `j, then r = r′.

Definition 9. (Index Modeling) If b is a run-time block, we say that b models i :T under Γ, γ, written

Γ `γ b |= i :T ,

iff, for all n ∈ i,

1. b(n) = v for some v, with Γ `γ v : T>.

2. If i ≡ n, then Γ `γ v : T .

3. If BS (b) ≤ BS (b + n) < BE (b), then Γ `γ v : T .

4. For all n < m < n + sizeof(T), b(m) = Used.

Definition 10. (Heap Modeling) If h1 is a run-time heap and h2 is a heap, we say that h1 models h2 under
Γ, γ, written

Γ `γ h1 |= h2,

iff, for all r ∈ Dom(γ),

• If γ(r) = `j, then `γ h1(r) |=` h2(`j).

• If γ(r) = ˜̀, then `γ h1(r) |=˜̀ h2(˜̀).

22

A.2 Forms Lemmas

Lemma 1. (Subtyping Forms) If Γ ` {ν :τ1 | a1} <: {ν :τ2 | a2} then either

• τ1 = 〈w〉i1 , τ2 = 〈w〉i2 , and i1 ⊆ i2,

• τ1 = ref(`j , i1), τ2 = ref(`j , i2), and i1 ⊆ i2,

• τ1 = ref(`j , i1), τ2 = ref(˜̀, i2), and i1 ⊆ i2, or

• τ1 = 〈W 〉0 and τ2 = ref(˜̀, i).

Proof. By structural induction on the dervation of Γ ` {ν :τ1 | a1} <: {ν :τ2 | a2}. 2

Lemma 2. (Canonical Forms) If a is a value, then

• If ∅ `γ a : 〈w〉i then a = 〈w〉n for some n ∈ i.

• If ∅ `γ a : ref(˜̀, i) then either a = 〈W 〉0 or a = ref(r, n) for some r and n ∈ i, with γ(r) = ˜̀ or
γ(r) = `j for some j.

• If ∅ `γ a : ref(`j , i) then either a = 〈W 〉0 or a = ref(r, n) for some r and n ∈ i, with γ(r) = `j.

Proof. By structural induction on the derivation of ∅ ` a : T . The only interesting case is [T-PureSub],
which uses Lemma 1. 2

Lemma 3. (Canonical Sizes) If v is a value and ∅ ` v : T , Size(v) = sizeof(T̂).

Proof. By cases on T :

• T ≡ 〈w〉i: By Lemma 2, v = 〈w〉n. By Definition 2 and the definition of Size, sizeof(T) = w = Size(v).

• T ≡ ref(`, i): By Lemma 2, v = 〈W 〉0 or v = ref(`j , n). Either way, by Definition 2 and the definition
of Size, sizeof(T) = W = Size(v).

2

Lemma 4. (Subtyping Sizes) If Γ ` T1 <: T2, then sizeof(T1) = sizeof(T2).

Proof. By structural induction on the derivation of Γ ` T1 <: T2. 2

Lemma 5. (Refinement Implication) If ∅ ` {ν :τ | a1} <: {ν :τ | a2} then, for any value v : τ , ∅ ` a1[v/ν] ⇒
a2[v/ν].

Proof. The proof proceeds by structural induction on the derivation of ∅ ` {ν :τ | a1} <: {ν :τ | a2}, and the
definition of ∅ ` {ν :τ | a1} <: {ν :τ | a2}. 2

Lemma 6. (Value Refinement) If v is a value and ∅ ` v : {ν :τ | a} then a[v/ν] ↪→∗ v′, v′ 6= 〈W 〉0.

Proof. The proof proceeds by structural induction on the derivation of ∅ ` v : {ν :τ | a}. The only interesting
case is [T-PureSub], which uses Lemma 5. 2

Lemma 7. (Value Self-Typing) If v is a value, then ∅ ` v : {ν = v}.

Proof. By cases on the form of v. 2

A.3 Subtyping Lemmas

Lemma 8. (Base Subtyping) If Γ ` T1 <: T2 then Γ ` T>1 <: T>2 .

Proof. By structural induction on the derivation of Γ ` T1 <: T2. 2

Lemma 9. (Subtype Heap Domains) If Γ ` h1 <: h2, then Dom(h1) = Dom(h2).

Proof. By structural induction on the derivation of Γ ` h1 <: h2. 2

23

A.4 Environment Lemmas

Lemma 10. (True Guard) If

Γ = Γ1;〈W 〉n;Γ2, n 6= 0
Γ′ = Γ1;Γ2

then

1. If Γ ` a1 ⇒ a2 then Γ′ ` a1 ⇒ a2.

2. If Γ ` a : T then Γ′ ` a : T .

3. If Φ,Γ, h1 ` e : T/h2 then Φ,Γ′, h1 ` e : T/h2.

4. If Γ ` T1 <: T2 then Γ′ ` T1 <: T2.

5. If Γ, h ` b1 <: b2 then Γ′, h ` b1 <: b2.

6. If Γ ` h1 <: h2 then Γ′ ` h1 <: h2.

7. If Γ ` T1/h1 <: T2/h2 then Γ′ ` T1/h1 <: T2/h2.

Lemma 11. (Guard Evaluation) If

Γ = Γ1;a1;Γ2

a1 ↪→Φ a2

Γ′ = Γ1;a2;Γ2

then

1. If Γ ` a1 ⇒ a2 then Γ′ ` a1 ⇒ a2.

2. If Γ ` a : T then Γ′ ` a : T .

3. If Φ,Γ, h1 ` e : T/h2 then Φ,Γ′, h1 ` e : T/h2.

4. If Γ ` T1 <: T2 then Γ′ ` T1 <: T2.

5. If Γ, h ` b1 <: b2 then Γ′, h ` b1 <: b2.

6. If Γ ` h1 <: h2 then Γ′ ` h1 <: h2.

7. If Γ ` T1/h1 <: T2/h2 then Γ′ ` T1/h1 <: T2/h2.

Lemma 12. (Narrowing) If

Γ1 ` T2

Γ1 ` T1 <: T2

Γ = Γ1;x :T2;Γ2

Γ′ = Γ1;x :T1;Γ2

then

1. If Γ ` a1 ⇒ a2 then Γ′ ` a1 ⇒ a2.

2. If Γ ` T <: T ′ then Γ′ ` T <: T ′.

24

3. If Γ ` b1 <: b2 then Γ′ ` b1 <: b2.

4. If Γ ` h1 <: h2 then Γ′ ` h1 <: h2.

5. If Γ ` T/h <: T ′/h′ then Γ′ ` T/h <: T ′/h′.

6. If Φ,Γ, h ` e : T/h then Φ,Γ′, h ` e : T/h.

Lemma 13. (Free Variables)

1. If Γ |=γ θ then Dom(θ) = Dom(Γ) and FreeVar(Rng(θ)) = ∅.

2. If Γ `γ a : T , then FreeVar(a) ⊆ Dom(Γ).

3. If Γ ` T , then FreeVar(T) ⊆ Dom(Γ).

4. If Γ `` b, then FreeVar(b) ⊆ Dom(Γ).

5. If Γ `˜̀ b, then FreeVar(b) ⊆ Dom(Γ).

6. If Γ ` h, then FreeVar(h) ⊆ Dom(Γ).

7. If Γ ` T/h, then FreeVar(T) ⊆ Dom(Γ), FreeVar(h) ⊆ Dom(Γ).

8. If Γ, h `γ e : T ∗/h∗, then FreeVar(e) ∪ FreeVar(T ∗) ∪ FreeVar(h∗) ⊆ Dom(Γ).

Proof. By simultaneous structural induction on the derivations in the hypotheses. 2

Lemma 14. (Free Locations)

1. If Γ `γ a : T , then Locs(a) = ∅.

2. If Γ ` T , then Locs(T) = ∅.

3. If Γ `` b, then Locs(b) = ∅.

4. If Γ ` h, then Locs(h) = ∅.

5. If Γ ` T/h, then Locs(T) = Locs(h) = ∅.

Proof. By simultaneous structural induction on the derivations in the hypotheses. 2

Lemma 15. (Weakening) If

Γ = Γ1; Γ2

Γ′ = Γ2;x :T ; Γ2

x /∈ FV (Γ2)

then

1. If Γ ` a1 ⇒ a2 then Γ′ ` a1 ⇒ a2

2. If Γ ` T then Γ′ ` T .

3. If Γ, h ` h then Γ′, h ` h.

4. If Γ ` T/h then Γ′ ` T/h.

5. If Γ ` T1 <: T2 then Γ′ ` T1 <: T2.

6. If Γ ` b1 <: b2 then Γ′ ` b1 <: b2.

7. If Γ ` h1 <: h2 then Γ′ ` h1 <: h2.

25

8. If Γ ` T1/h1 <: T2/h2 then Γ′ ` T1/h1 <: T2/h2.

9. If Γ ` a : T then Γ′ ` a : T .

10. If Φ,Γ, h ` e : T ∗/h∗ then Φ,Γ′, h ` e : T ∗/h∗.

Proof. By simultaneous structural induction on all the derivations. 2

Lemma 16. (Heap Disjunction) If Γ ` h1, Γ ` h2, then Γ ` h1 ∗ h2 iff Dom(h1) ∩ Dom(h2) = ∅.

Proof. By induction on |Dom(h2)|. 2

Lemma 17. (Heap Weakening)

If Γ ` h1

Γ ` h2

Γ ` h1 ∗ h2

Φ,Γ, h1 `γ e : T ∗/h∗

then Φ,Γ, h1 ∗ h2 `γ e : T ∗/h∗ ∗ h2

Proof. By structural induction on the derivation of Φ,Γ, h1 `γ e : T ∗/h∗. ♣ pmr: todo♣ 2

Lemma 18. (Global Environment Weakening)

If Φ1,Γ, h `γ e : T ∗/h∗

`Φ1; Φ2

then Φ1; Φ2,Γ, h `γ e : T ∗/h∗

Proof. By induction on |Dom(Φ2)|. 2

A.5 Substitution Lemmas

Lemma 19. (Substitution Permutation) If Γ |=γ θ1; θ2, then

1. Dom(θ1) ∩ Dom(θ2) = ∅.

2. For all a, (θ1; θ2)a = (θ2; θ1)a.

3. For all e, (θ1; θ2)e = (θ2; θ1)e.

4. For all T , (θ1; θ2)T = (θ2; θ1)T .

5. For all b, (θ1; θ2)h = (θ2; θ1)b.

6. For all h, (θ1; θ2)h = (θ2; θ1)h.

Proof. (1) follows by induction on the structure of the derivation of Γ |=γ θ1; θ2 and the fact that any variable
is bound at most once in Γ.

The remainder follow by simple inductions using (1) and the fact that, by Lemma 14, FreeVar(Rng(θ1)) =
FreeVar(Rng(θ2)) = ∅. 2

Lemma 20. (Well-Formed Value Substitution)

1. If Γ |=γ θ1;θ2 then there are Γ1,Γ2, such that Γ ≡ Γ1;Γ2, Dom(θ1) = Dom(Γ1), Dom(θ2) = Dom(Γ2).

2. If Γ1;Γ2 |=γ θ then then are θ1, θ2 such that θ ≡ θ1;θ2, Dom(θ1) = Dom(Γ1), Dom(θ2) = Dom(Γ2).

3. Γ1;Γ2 |=γ θ1;θ2, Dom(θ1) = Dom(Γ1), Dom(θ2) = Dom(Γ2) iff Γ1 |=γ θ1, θ1Γ2 |=γ θ2.

26

Proof. We consider each case in turn.

1. By induction on Γ.

2. By induction on θ.

3. By induction on |Dom(Γ1)|.

• Case |Dom(Γ1)| = 0: Immediate by [WS-Empty], since Dom(θ2) ⊆ Dom(Γ2), so θ2 ≡ ∅.
• Case |Dom(Γ1) > 0|, Γ1 ≡ x :T ;Γ0:

x :T ;Γ0;Γ2 |=γ θ1;θ2

⇐⇒ θ1 ≡ [v/x];θ0 (Dom(θ1) = Dom(Γ1),
∅ `γ v : T [WS-Ext])

(Γ0;Γ2)[v/x] |=γ θ0;θ2

⇐⇒ θ1 ≡ [v/x];θ0 (IH)
∅ `γ v : T

Γ0[v/x] |=γ θ0

Γ2[v/x] |=γ θ2

⇐⇒ θ1 |=γ θ1 ([WS-Ext],
θ1Γ2 |=γ θ2 Lemma 19)

• Case |Dom(Γ1) > 0|, Γ1 ≡ a;Γ0:

a;Γ0;Γ2 |=γ θ1;θ2

⇐⇒ a ↪→Φ v [WS-Gxt]
v 6= 〈w〉0

Γ0;Γ2 |=γ θ1;θ2

⇐⇒ a ↪→Φ v (IH)
v 6= 〈w〉0

Γ0 |=γ θ1

θ1Γ2 |=γ θ2

⇐⇒ Γ1 |=γ θ1 [WS-Gxt]
θ1Γ2 |=γ θ2

2

Lemma 21. (Value Substitution) If Γ1 |= θ, then

1. If Γ1; Γ2 |=γ θ; θ2 then θΓ2 |=γ θ2.

2. If Γ1; Γ2, h |= ρ then θΓ2, θh |= ρ.

3. If Γ1; Γ2 ` e1 ⇒ e2 then θΓ2 ` θe1 ⇒ θe2.

4. If Γ1; Γ2, h ` T then θΓ2, θh ` θT .

5. If Γ1; Γ2, h `` b then θΓ2, θh `` θb.

6. If Γ1; Γ2, h `˜̀ b then θΓ2, θh `˜̀ θb.

7. If Γ1; Γ2, h1 ` h then θΓ2, θh1 ` θh.

8. If Γ1; Γ2 ` T/h then θΓ2 ` θT/θh.

9. If Γ1; Γ2 ` T1 <: T2 then θΓ2 ` θT1 <: θT2.

10. If Γ1; Γ2 ` b1 <: b2 then θΓ2 ` θb1 <: b2.

11. If Γ1; Γ2 ` h1 <: h2 then θΓ2 ` θh1 <: θh2.

27

12. If Γ1; Γ2 ` T1/h1 <: T2/h2 then θΓ2 ` θT1/θh1 <: θT2/θh2.

13. If Γ1; Γ2 ` a : T then θΓ2 ` θa : θT .

14. If Φ,Γ1; Γ2, h1 ` e : T/h and ` Φ then Φ, θΓ2, θh1 ` θe : θT/θh.

15. If Γ = ∅, `γ b1 |= i :T then `γ b1 |= i :θT .

16. If Γ = ∅, `γ b1 |=˜̀ b2 then `γ b1 |=˜̀ θb2.

17. If Γ = ∅, `γ b1 |=` b2 then `γ b1 |=` θb2.

Proof. By simultaneous structural induction on the derivations in the hypotheses. 2

Lemma 22. (Location Substitution)

If Γ, h ` ρ

Γ, h1 ` ρ

Γ, h2 ` ρ

then

1. If Γ |=γ θ then ρΓ |=γ ρθ.

2. If Γ, h2 |= ρ2 then ρΓ, ρh2 |= ρρ2.

3. If Γ ` e1 ⇒ e2 then ρΓ ` ρe1 ⇒ ρe2.

4. If Γ, h1 ` T then ρΓ, ρh1 ` ρT .

5. If Γ, h1 `˜̀ b then ρΓ2, ρh1 `˜̀ ρb.

6. If Γ ` h1 then ρΓ ` ρh1.

7. If Γ ` T/h1 then ρΓ ` ρT/ρh1.

8. If Γ ` T1 <: T2 then ρΓ ` ρT1 <: ρT2.

9. If Γ ` b1 <: b2 then ρΓ ` ρb1 <: ρb2.

10. If Γ ` h1 <: h2 then ρΓ ` ρh1 <: ρh2.

11. If Γ ` T1/h1 <: T2/h2 then ρΓ ` ρT1/ρh1 <: ρT2/ρh2.

12. If Γ ` a : T then ρΓ ` ρa : ρT .

13. If Φ,Γ, h ` e : T ∗/h∗ and ` Φ then Φ, ρΓ, ρh ` θe : ρT ∗/ρh∗.

14. If `γ b1 |= i :T then `γ b1 |= i :ρT .

15. If `γ b1 |=˜̀ b2 then `γ b1 |=˜̀ ρb2.

16. If `γ b1 |=` b2 then `γ b1 |=` ρb2.

Proof. ♣ pmr: check♣ By simultaneous structural induction on the derivations in the hypotheses. 2

Lemma 23. (Location Raising) If

γ2 ≡ γ1[`j 7→ ˜̀]

θ ≡ [˜̀/`j]

then

28

1. If Γ `γ1 a : T then θΓ `γ2 a : θT .

2. If Γ `γ1 b1 |=˜̀ b2, then θΓ `γ2 b1 |=˜̀ θb2.

3. If Γ `γ1 b1 |=` b2, then θΓ `γ2 b1 |=` θb2.

Proof. 1. By induction on the derivation of Γ `γ1 a : T .

2. By induction on the size of Dom(b2).

3. By induction on the size of Dom(b2).
2

Lemma 24. (Index Substitution)

If `γ b |=˜̀ n :Tn . . . , i+ :T+ . . .
∅, h `˜̀ n :Tn . . . , i+ :T+ . . .
θ1 ≡ [x1/@n . . .]
Γ ≡ x1 :θ1T1;. . .

x1 . . . fresh
θ2 ≡ [b(n)/x1 . . .]

then Γ |=γ θ2.

Proof. ♣ pmr: check♣ By structural induction on the derivation of

`γ b |=˜̀ n :Tn . . . , i+ :T+

We split cases on the final rule used.

• Case [ABM-Empty] Trivial by [WS-Empty].

• Case [ABM-Field] Assume

`γ b |=˜̀ n :Tn, b2 (3)
∅, h `˜̀ n :Tn, b2 (4)
θ1 ≡ [x1/@n]θ′1 (5)
Γ ≡ x1 :θ1T1;Γ2 (6)
x1 . . . fresh (7)

θ2 ≡ [b(n)/x1]θ′2 (8)

By inversion on [ABM-Field] (3),

`γ b |= n :Tn (9)
`γ b |=˜̀ b2[b(n)/@n] (10)

By (9) and Definition 9,

∅ `γ b(n) : Tn (11)

By inversion on [WF-Field] (4),

∅, h ` Tn (12)
x1 :Tn, h ` b2[x1/@n] (13)

29

By (11), [WS-Empty], and [WS-Ext],

x1 :Tn |= [b(n)/x1] (14)

By (13), (14), x1 fresh, and Lemma 21,

∅, h ` b2[b(n)/@n] (15)

By (15), (10), and the inductive hypothesis,

Γ2[b(n)/x1] |=γ θ′2 (16)

By (12) and Lemma 13,

Tn = θ1Tn (17)

So by (12),

∅ `γ b(n) : θ1Tn (18)

By (16), (18), and [WS-Ext],

x1 :θ1Tn;Γ2 |=γ θ2 (19)

• Case [ABM-Array] Assume

`γ b |=˜̀ n+m :Tn, b2 (20)

∅, h `˜̀ n+m :Tn, b2 (21)

By inversion on [ABM-Array] (20),

`γ b |=˜̀ b2 (22)

By inversion on [WF-Array] (21),

∅, h ` Tn (23)
∅, h ` b2 (24)

By (24), (22), and the inductive hypothesis,

Γ |=γ θ2 (25)

2

A.6 Modeling Lemmas

Lemma 25. (Concrete Model Splitting)

`γb |=` b1, b2

iff `γb |=` b1,

`γb |=` b2

Proof. By structural induction on b1. 2

30

Lemma 26. (Subtype Index Modeling)

If `γ b |= i :T1

∅ ` T1 <: T2

then `γ b |= i :T2

Proof. By structural induction on the derivation of ∅ ` T1 <: T2. 2

Lemma 27. (Abstract Subblock Modeling)

If `γ b1 |=˜̀ b2

∅ ` b2 <: b3

∅ `˜̀ b2

∅ `˜̀ b3

then ∅ `γ b1 |=˜̀ b3

Proof. By structural induction on the derivation of `γ b1 |=˜̀ b2. We split cases on the final rule used.

• [ABM-Empty] Trivial, as b2 = b3 = emp.

• [ABM-Field] Assume

`γ b1 |=˜̀ n :T2, b2 (26)
∅ `γ n :T2, b2 <: n :T3, b3 (27)
∅ `˜̀ n :T2, b2 (28)
∅ `˜̀ n :T3, b3 (29)

By inversion on [ABM-Field] (26),

`γb1 |= n :T2 (30)
`γb1 |=˜̀ b2[b1(n)/@n] (31)

By inversion on [<:-Field] (27),

∅ ` T2 <: T3 (32)
x :T2 ` b2[x/@n] <: b3[x/@n] (33)

By inversion on [WF-AbsBlock] (28, 29),

x :T2 ` b2[x/@n] (34)
x :T3 ` b3[x/@n] (35)

By (30) and Definition 9,

∅ `γ b1(n) : T2 (36)

By [T-PureSub], (36), and (33)

∅ `γ b1(n) : T3 (37)

By [WS-Empty], [WS-Ext], (36), and (37)

x :T2 |= [b1(n)/x] (38)
x :T3 |= [b1(n)/x] (39)

31

By (33), (38), (39), (34), (35), and Lemma 21,

∅ ` b2[b1(n)/@n] <: b3[b1(n)/@n] (40)
∅ ` b2[b1(n)/@n] (41)
∅ ` b3[b1(n)/@n] (42)

By (32), (30), and Lemma 26,

`γb1 |= n :T3 (43)

By (31), (40), (41), (42), and the inductive hypothesis,

`γb1 |=˜̀ b3[b1(n)/@n] (44)

By (43), (44), and [ABM-Field],

`γ b1 |=˜̀ n :T3, b3 (45)

• [ABM-Array] Assume

`γ b1 |=˜̀ n+m :T2, b2 (46)

∅ `γ n+m :T2, b2 <: n+m :T3, b3 (47)

∅ `˜̀ n+m :T2, b2 (48)

∅ `˜̀ n+m :T3, b3 (49)

By inversion on [ABM-Array] (46),

`γb1 |= n+m :T2 (50)
`γb1 |=˜̀ b2 (51)

By inversion on [<:-Field] (47),

∅ ` T2 <: T3 (52)
∅ ` b2 <: b3 (53)

By inversion on [WF-Field] (48, 49),

∅ ` b2 (54)
∅ ` b3 (55)

By (52), (50), and Lemma 26,

`γb1 |= n+m :T3 (56)

By (51), (47), (54), (55), and the inductive hypothesis,

`γb1 |=˜̀ b3 (57)

By (56), (57), and [ABM-Field],

`γ b1 |=˜̀ n+m :T3, b3 (58)

32

2

Lemma 28. (Concrete Subblock Modeling)

If `γ b1 |=` b2

∅ ` b2 <: b3

∅ `˜̀ b2

∅ `˜̀ b3

then ∅ `γ b1 |=` b3

Proof. By structural induction on the derivation of `γ b1 |=` b2. We split cases on the final rule used.

• [CBM-Empty] Trivial, as b2 = b3 = emp.

• [CBM-Ext] Similar to the [ABM-Array] case of Lemma 27.

2

Corollary 1. (Heap Subtype Modeling)

If h1 |=γ h2

∅ ` h2 <: h3

then h1 |=γ h3

Proof. Immediate from Lemma 27 and Lemma 28. 2

Lemma 29. (Concrete to Abstract Modeling)

If `γ b1 |=` b2

∅, h ``b2

then `γ b1 |=˜̀ b2

Proof. By structural induction on the derivation of `γ b1 |=` b2. We split cases on the final rule used.

• Case [CBM-Empty] Trivial by [ABM-Empty].

• Case [CBM-Ext] Assume

`γ b1 |=` i :T , b2 (59)
∅, h ``i :T , b2 (60)

By inversion on [CBM-Ext] (59), we have

`γ b1 |= i :T (61)
`γ b1 |=` b2 (62)

By the inductive hypothesis and (62),

`γ b1 |=˜̀ b2 (63)

There are two cases. First, suppose

i ≡ n+m (64)

33

Then by (62), (61), and [ABM-Array],

`γ b1 |=` n+m :T , b2 (65)

Otherwise, we have

i ≡ n (66)

By inversion on [WF-ConcBlock] (60),

∅, h `` b2 (67)

By (67), and Lemma 14,

Locs(b2) = ∅ (68)

Thus

b2 = b2[b1(n)/n] (69)

and so by (63),

`γ b1 |=˜̀ b2[b1(n)/n] (70)

2

Lemma 30. (Unfolding Lemma)

If b2 ≡ n1 :T1 . . . , i+ :T+ . . .

∅, h ` b2

`γ b |=˜̀ b2

θ ≡ [b(n1)/@n1 . . .]

then `γ b |=` n1 :{ν = b(n1)} . . . , i+ :θT+ . . .

Proof. By structural induction on the derivation of `γ b |=˜̀ b2. We split cases on the final rule used.

• Case [ABM-Empty] Immediate by [CBM-Empty].

• Case [ABM-Field] Assume

b2 ≡ n1 :T1 . . . , b′2 (71)
∅, h ` b2 (72)
`γ b |=˜̀ b2 (73)

θ ≡ [b(n1)/@n1]θ′ (74)

By inversion on [ABM-Field] (73),

`γ b |= n1 :T1 (75)
`γ b |=˜̀ b′2[b(n1)/@n1] (76)

By Lemma 7,

∅ `γ b(n1) : {ν = b(n1)} (77)

34

By (75), (77), and Definition 9,

`γ b |= n1 :{ν = b(n1)} (78)

By inversion on [WF-Field] (72),

x :T1, h ` b′2[x/@n1] (79)

By (75) and Definition 9,

∅ `γ b(n1) : T1 (80)

So by [WS-Empty] and [WS-Ext],

x :T1 |= [b(n1)/x] (81)

By (81), (79), and Lemma 21,

∅, h ` b′2[b(n1)/@n1] (82)

By (82), (76), and the inductive hypothesis,

`γ b |=` θ′b′2[b(n1)/@n1] (83)

Equivalently,

`γ b |=` θb′2 (84)

By (78), (84), and [CBM-Ext],

`γ b |=` n1 :{ν = b(n1)} . . . , θb′2 (85)

• Case [ABM-Array] Assume

b2 ≡ n+m :T1 . . . , b′2 (86)
∅, h ` b2 (87)
`γ b |=˜̀ b2 (88)

(89)

By inversion on [ABM-Array] (88),

`γ b |= n+m :T1 (90)
`γ b |=˜̀ b′2 (91)

By inversion on [WF-Array] (87),

∅, h ` b′2 (92)

By (92), (91), and the inductive hypothesis,

`γ b |=` θb′2 (93)

By (93), (90), and [CBM-Ext],
`γ b |=` θb2

2

Lemma 31. (Disjoint Heap Model) If Dom(h1)∩Dom(h2) = ∅, then h |=γ h1 ∗h2 iff h |=γ h1 and h |=γ h2.

Proof. By induction on |Dom(h2)|. 2

35

A.7 Location Map Lemmas

Lemma 32. (Location Lowering) If

r /∈ Dom(γ1) or γ1(r) = ˜̀

γ2 = γ1[r 7→ `j]

then

1. If Γ `γ1 a : T , then Γ `γ2 a : T .

2. If Φ,Γ, h1 `γ1 e : T/h2, then Φ,Γ, h1 `γ2 e : T/h2.

3. If h |=γ1 h1, then h |=γ2 h1.

Proof. All three are shown by straightforward structural induction on the derivation in the hypothesis. 2

Lemma 33. (Location Map Weakening) If r /∈ Dom(γ),

1. If Γ `γ a : T then Γ `γ[r 7→`] a : T.

2. If Φ,Γ, h `γ e : T ∗/h∗, then Φ,Γ, h `γ[r 7→`] e : T ∗/h∗.

3. If `γ b1 |=` b2 then `γ[r 7→`] b1 |=` b2.

4. If `γ b1 |=˜̀ b2 then `γ[r 7→`] b1 |=˜̀ b2.

Proof. (1) and (2) are both are proved by straightforward structural induction on the derivation in the
hypothesis.

(3) and (4) are proved by induction on b2 using (1). 2

Corollary 2. (Empty Location Map Weakening)

1. If Γ `∅ a : T then Γ `γ a : T.

2. If Φ,Γ, h `∅ e : T ∗/h∗, then Φ,Γ, h `γ e : T ∗/h∗.

Proof. Straightforward induction on |Dom(γ)| using Lemma 33. 2

A.8 Progress

Lemma 34. (Pure Expression Progress) If ∅ `γ a : T and a is not a value then there exists an a′ such that
a ↪→Φ a′.

Proof. The proof proceeds by structural induction on the derivation of ∅ ` a : T . We split cases on the last
rule of the derivation.

The only interesting case is [T-Assert]. Given the expression assert(a), there are two possibilities. If a
is not a value, then the inductive hypothesis applies: a can be evaluated to some a′ and [R-Context] is used
to form the expression assert(a′). Otherwise, a is a value. By inversion, we have ∅ ` a : {ν :int | ν 6= 0}.
By Lemma 6, we have a 6= 0 ↪→∗ v, v 6= 〈W 〉0; since a is a value, we have a 6= 0 ↪→ v. By Definition 1 and
a 6= 0 ↪→ v, we have a 6= 0, so we apply [R-Assert] to obtain a′ = void. 2

Theorem 1. (Progress) If

Φ, ∅, h1 `γ1 e : T ∗/h∗

h |=γ1 h1

∅ ` h1

h 7→ h1 ` γ1

e is not a value

then there exist e′, h′, h2, γ2 such that e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2.

36

Proof. The proof proceeds by structural induction on the derivation of Φ, ∅, h1 ` e : T ∗/h∗. We split cases
on the last rule of the derivation.

• Case [T-Pure] By inversion, Lemma 34, and [R-Pure].

• Case [T-Read] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (94)
h |=γ1 h1 (95)
∅ ` h1 (96)

h 7→ h1 ` γ1 (97)
e is not a value (98)

with e ≡ ∗a.

If a is not a value, then [R-Context] applies.

Suppose a is a value. We show that [R-Read] applies.

By inversion on [T-Read] (94), we have

Φ, ∅, h1 `γ1 a : {ν :ref(`j , i) | Safe(ν)} (99)

By Lemma 2 and (99), we have

a = 〈W 〉0 or (100)
a = ref(r, n) for some n ∈ i with γ1(r) = `j . (101)

By Lemma 6 and (99), we have

a 6= 〈W 〉0 (102)
BS (a) ≤ a < BE (a) (103)

So a = ref(r, n). By 101,

r ∈ Dom(γ1) (104)

By Definition 10 and (97),

Dom(h) = Dom(γ1) (105)

so

r ∈ Dom(h) (106)

Thus we have

h ≡ h′′ ∗ r 7→ b (107)

By inversion on [T-Read] (94),

h1 ≡ h0 ∗ `j 7→ . . . , i :T , . . . (108)

37

By Definition 10 and (101),

∅ `γ1 b |=` . . . , i :T , . . . (109)

By Lemma 25,

`γ1 b |=` i :T (110)

By inversion on [CBM-Ext],

`γ1 b |= i :T (111)

By Definition 9,

b(n) = v for some value v (112)

By (101), (107), and (112), [R-Read] applies.

• Case [T-Write-Array] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (113)
h |=γ1 h1 (114)
∅ ` h1 (115)

h 7→ h1 ` γ1 (116)
e is not a value (117)

with e ≡ ∗a1 := a2.

Suppose either of a1 or a2 is not a value. Then [R-Context] applies.

Otherwise, both a1 and a2 are values.

By inversion on [T-Write-Array] (113), we have

∅ `γ1 a1 : {ν :ref(`j , n
+m) | Safe(ν)} (118)

∅ `γ1 a2 : T ∗ (119)

h1 ≡ h0 ∗ `j 7→ . . . , n+m :T ∗, . . . (120)

By Lemma 2 and (118), we have

a = 〈W 〉0 or (121)

a = ref(r, c) for some c ∈ n+m with γ1(r) = `j . (122)

By Lemma 6 and (118), we have

a 6= 〈W 〉0 (123)
BS (a) ≤ a < BE (a) (124)

So a = ref(r, c). By (122),

r ∈ Dom(γ1) (125)

38

By Definition 10 and (116),

Dom(h) = Dom(γ1) (126)

so

r ∈ Dom(h) (127)

Thus we have

h ≡ h′′ ∗ r 7→ b (128)

By Definition 10 and (114),

∅ `γ1 b |=` . . . , n+m :T ∗, . . . (129)

By Lemma 25,

∅ `γ1 b |=` n+m :T ∗ (130)

By inversion on [CBM-Ext],

`γ1 b |= n+m :T ∗ (131)

By Definition 9, and (124),

∅ `γ1b(c) : T ∗ (132)

By (132), (119), and Lemma 3,

Size(b(c)) = Size(a2) (133)

Thus we have

Fit(b, c, a2) (134)

By (124), (134), (122), (120), and (124), [R-Write-Array] applies.

• Case [T-Write-Field] Similar to [T-Write-Array].

• Case [T-Sub] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (135)
h |=γ1 h1 (136)
∅ ` h1 (137)

h 7→ h1 ` γ1 (138)
e is not a value (139)

By inversion on [T-Sub] (135),
Φ, ∅, h1 ` e : T1/h3.

Combining this with the above assumptions allows us to apply the inductive hypothesis.

39

• Case [T-If] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (140)
(141)

with e ≡ if a then e1 else e2.

There are two cases.

Suppose a is not a value. By inversion on [T-If] (140), we have

∅ `γ1 a : 〈n〉i.

So [R-Context] and [R-Pure] apply by Lemma 34.

Otherwise, a is a value, and [R-Context] and one of [T-If-True] or [T-If-False] apply.

• Case [T-Let] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (142)
h |=γ1 h1 (143)
∅ ` h1 (144)

h 7→ h1 ` γ1 (145)
e is not a value (146)

with e ≡ let x = e1 in e2.

There are two cases.

Suppose e1 is not a value. By inversion on [T-Let] (142),

Φ, ∅, h1 `γ1 e1 : T/h.

So [R-Context] applies by the inductive hypothesis and the previous assumptions.

Otherwise, e1 is a value, and [R-Let] and [R-Pure] apply.

• Case [T-Unfold] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (147)
h |=γ1 h1 (148)
∅ ` h1 (149)

h 7→ h1 ` γ1 (150)
e is not a value (151)

with e ≡ letu x = [unfold ` 7→ `j] a in e2.

By inversion on [T-Unfold] (147),

∅ `γ1 a : {ν :ref(˜̀, i) | ν 6= 0}. (152)

There are two cases.

Suppose a is not a value. Then [R-Context] applies by (152) and Lemma 34.

Otherwise, a is a value. Then [R-Unfold] and [R-Pure] apply by (152) and Lemma 2.

40

• Case [T-Fold] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (153)
h |=γ1 h1 (154)
∅ ` h1 (155)

h 7→ h1 ` γ1 (156)
e is not a value (157)

By inversion on [T-Fold] (153),
h1 ≡ h2 ∗ `j 7→ b.

Thus, [R-Fold] and [R-Pure] apply.

• Case [T-Malloc] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (158)
h |=γ1 h1 (159)
∅ ` h1 (160)

h 7→ h1 ` γ1 (161)
e is not a value (162)

with e ≡ malloc(` 7→ `j , a).

By inversion on [T-Malloc]
∅ `γ1 a : {ν :int | ν > 0}. (163)

There are two cases.

Suppose a is not a value.

So [R-Context] and [R-Pure] apply by Lemma 34.

If a is a value, then we have a > 0 by Lemma 6 and (163). Thus, [R-Malloc] applies.

2

A.9 Preservation

Lemma 35. (Pure Expression Preservation)

If ∅ `γ a : T

a ↪→Φ a′

then ∅ `γ a : T

Proof. Straightforward structural induction on the derivation of ∅ `γ a : T . 2

Theorem 2. (Preservation) If

Φ, ∅, h1 `γ1 e : T ∗/h∗

e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2

h |=γ1 h1

∅ ` h1

h 7→ h1 ` γ1

41

then

Φ, ∅, h2 `γ2 e′ : T ∗/h∗

h′ |=γ2 h2

∅ ` h2

h′ 7→ h2 ` γ2

` Φ

Proof. By structural induction on the derivation of Φ, ∅, h1 ` e : T ∗/h∗. We split cases on whether [R-
Context] is used in the evaluation, then we split cases on the final rule used in the type derivation.

First, suppose
e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2

by [R-Context]. Then the proof proceeds by: splitting cases on the form of the context; inversion on the
appropriate typing rule; invocation of the inductive hypothesis or Lemma 35 and [T-Pure]; and reapplying
the typing rule.

Next, suppose
e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2

by a rule other than [R-Context]. We split cases on the last rule in the derivation of

Φ, ∅, h1 `γ1 e : T ∗/h∗.

• Case [T-Pure] Immediate using Lemma 35.

• Case [T-Sub] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (164)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (165)

h |=γ1 h1 (166)
∅ ` h1 (167)

h 7→ h1 ` γ1 (168)

By inversion on [T-Sub] (164), we have

Φ, ∅, h1 `γ1 e : T1/h3 (169)
∅ ` T1/h3 <: T ∗/h∗ (170)
∅ ` T ∗/h∗ (171)

By (169), (165), (166), (167), (168), and the inductive hypothesis,

Φ, ∅, h2 `γ2 e′ : T1/h3 (172)
h′ |=γ2 h2 (173)
∅ ` h2 (174)

h′ 7→ h2 ` γ2 (175)

By (172), (170), (171), and [T-Sub],

Φ, ∅, h2 `γ2 e′ : T ∗/h∗ (176)

42

• Case [T-Read] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (177)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (178)

h |=γ1 h1 (179)
∅ ` h1 (180)

h 7→ h1 ` γ1 (181)

with e ≡ ∗a.

By inversion on [T-Read] (177),

∅ `γ1 a : {ν :ref(`j , i) | Safe(ν)} (182)
h1 ≡ h0 ∗ `j 7→ . . . , i :T ∗, . . . (183)
h2 ≡ h1 (184)
h′ ≡ h (185)

The only evaluation rule that applies is [R-Read]. By inversion on [R-Read] (178),

a ≡ ref(r, n) (186)
h ≡ hu ∗ r 7→ b (187)

BS (v) ≤ v < BE (v) (188)
b(n) = v′ (189)

By (182), (186) and Lemma 2,

n ∈ i (190)
γ1(r) = `j (191)

By (191), (187), (183), and Definition 10,

∅ `γ1 b |=` . . . , i :T ∗, . . . (192)

By Lemma 25,

∅ `γ1 b |=` i :T ∗ (193)

By inversion on [CBM-Ext],

`γ1 b |= i :T ∗ (194)

By (188), (189), Definition 9, and Definition 5,

∅ `γ1 v′ : T ∗ (195)

Note also that

h∗ ≡ h2 (196)

By [T-Pure], then, we have

Φ, ∅, h2 `γ2 v′ : T ∗/h∗ (197)

The remaining obligations follow from the assumptions, since γ2 = γ1, h2 = h1, and h′ = h.

43

• Case [T-Write-Field] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (198)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (199)

h |=γ1 h1 (200)
∅ ` h1 (201)

h 7→ h1 ` γ1 (202)

with e ≡ ∗a1 := a2.

By inversion on [T-Write-Field] (198),

∅ `γ1 a1 : {ν :ref(`j , n) | Safe(ν)} (203)
∅ `γ1 a2 : τ (204)

h1 ≡ h0 ∗ `j 7→ . . . , n :{ν :τ | a}, . . . (205)
h∗ ≡ h0 ∗ `j 7→ . . . , n :{ν :τ | ν = a2}, . . . (206)
T ∗ ≡ void (207)

The only evaluation rule that applies is [R-Write-Field]. By inversion on [R-Write-Field] (199),
we have

a1 ≡ ref(r, m) (208)
γ1(r) = `k (209)

h ≡ hu ∗ r 7→ b (210)
BS (a1) ≤ a1 < BE (a1) (211)

h′ ≡ hu ∗ r 7→ Upd(b, m, a2) (212)
h2 ≡ h0 ∗ `k 7→ . . . , m :{ν :τ | ν = a2}, . . . (213)

By the from of [R-Write-Field], we also have

e′ ≡ void (214)

By (203), (208), and Lemma 2,

m = n (215)
`k = `j (216)

So

h2 ≡ h∗ (217)
γ2 ≡ γ1 (218)

We first show that Φ, ∅, h2 ` e′ : T ∗/h∗. This follows from (214), use of [T-Int] and [T-Pure], (207),
and (217),

We immediately have ∅ ` h2 from ∅ ` h1 and the form of h2, which does not introduce free variables
not present in h1.

We also immediately have h′ 7→ h2 ` γ2 since γ2 = γ1, Dom(h′) = Dom(h), and Dom(h2) = Dom(h1).

Finally, we show that h′ |=γ2 h2. Suppose r2 ∈ Dom(γ2). We split cases on γ2(r2).

44

– Case γ2(r2) = `j :

By Definition 10, we must show

∅ `γ2 h′(r2) |=` h2(`j)

But we also have

h′ 7→ h2 ` γ2

and so by Definition 8

r2 = r

Thus, it suffices to show

∅ `γ2 Upd(b, n, a2) |=` b1, n :{ν :τ | ν = a2}, b2

By (201),

Dom(b1) ∩ Ind(n, τ) = ∅
Dom(b2) ∩ Ind(n, τ) = ∅

So by Lemma 25, we need only show

∅ `γ2 Upd(b, n, a2) |=` n :{ν :τ | ν = a2}

By definition,

Upd(b, n, a2)
.= b[n 7→ a2][n + 1, . . . , n + Size(a2)− 1 7→ Used]

By (204) and Lemma 7, we have

∅ `γ2 Upd(b, n, a2)(n) : {ν :τ | ν = a2}

By Lemma 3, we have

for all n <m < sizeof(τ),Upd(b, n, a2)(m) = Used

Thus, we have

∅ `γ2 Upd(b, n, a2) |=` n :{ν :τ | ν = a2}

as required.

– Case γ2(r2) = `2k, `2k 6= `j :
Then r2 6= r; by h |=γ1 h1, γ2 = γ1, (213), and (212),

∅ `γ2 h′(r2) |=` h2(`k)

45

– Case γ2(r2) = ˜̀:
Similar to previous.

• Case [T-Write-Array] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (219)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (220)

h |=γ1 h1 (221)
∅ ` h1 (222)

h 7→ h1 ` γ1 (223)

with e ≡ ∗a1 := a2.

By inversion on [T-Write-Array] (219),

∅ `γ1 a1 : {ν :ref(`j , n
+m) | Safe(ν)} (224)

∅ `γ1 a2 : T (225)

h1 ≡ h0 ∗ `j 7→ . . . , n+m :T , . . . (226)
h∗ ≡ h1 (227)
T ∗ ≡ void (228)

The only evaluation rule that applies is [R-Write-Array]. By inversion on [R-Write-Array] (220),
we have

a1 ≡ ref(r, c) (229)
γ1(r) = `k (230)

h ≡ hu ∗ r 7→ b (231)
BS (a1) ≤ a1 < BE (a1) (232)

h′ ≡ hu ∗ r 7→ Upd(b, c, a2) (233)

h1 ≡ h0 ∗ `j 7→ . . . , i+ :T ′, . . . (234)
h2 ≡ h1 (235)
γ2 ≡ γ1 (236)

c ∈ i+ (237)

By the from of [R-Write-Array], we also have

e′ ≡ void (238)

By (224), (229), and Lemma 2,

c ∈ n+m (239)
`k = `j (240)

By (237), (239), (222), and [WF-Concrete],

i+ = n+m (241)
T ′ = T (242)

We first show that Φ, ∅, h2 ` e′ : T ∗/h∗. This follows from (238), use of [T-Int] and [T-Pure], (228),
and (235),

We immediately have ∅ ` h2 from ∅ ` h1 and (213).

We also immediately have h′ 7→ h2 ` γ2 since γ2 = γ1, Dom(h′) = Dom(h), and Dom(h2) = Dom(h1).

Finally, we show that h′ |=γ2 h2. Suppose r2 ∈ Dom(γ2). We split cases on γ2(r2).

46

– Case γ2(r2) = `j :

By Definition 10, we must show

∅ `γ2 h′(r2) |=` h2(`j)

But we also have

h′ 7→ h2 ` γ2

and so by Definition 8

r2 = r

Thus, it suffices to show

∅ `γ2 Upd(b, c, a2) |=` b1, n
+m :T , b2

By (222),

Dom(b1) ∩ Ind(n+m, T) = ∅
Dom(b2) ∩ Ind(n+m, T) = ∅

So by Lemma 25, we need only show

∅ `γ2 Upd(b, c, a2) |=` n+m :T

This means, by Definition 9, and (232), that we must show

∅ `γ2 Upd(b, c, a2) |= n+m :T

and

for all d ∈ n+m <l < sizeof(T),Upd(b, c, a2)(l) = Used

By definition,

Upd(b, c, a2)
.= b[c 7→ a2][c + 1, . . . , c + Size(a2)− 1 7→ Used]

By Definition 10, Lemma 25, and inversion on [CBM-Ext],

∅ `γ1 b |= n+m :T

Suppose d ∈ n+m, d 6= c; then these results are immediate from (221) and γ2 = γ1. Now suppose
d = c. By (225),

∅ `γ2 Upd(b, c, a2)(c) : T

By Lemma 3, we have

for all d <l < sizeof(T),Upd(b, c, a2)(l) = Used

Thus, by Definition 9, we have

Γ `γ2 Upd(b, c, a2) |=` n+m :T

as required.

47

– Case γ2(r2) = `2k, `2k 6= `j :
Then r2 6= r; by h |=γ1 h1, γ2 = γ1, (235), and (233),

∅ `γ2 h′(r2) |=` h2(`k)

– Case γ2(r2) = ˜̀:
Similar to previous.

• Case [T-If] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (243)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (244)

h |=γ1 h1 (245)
∅ ` h1 (246)

h 7→ h1 ` γ1 (247)

with e ≡ if (a) {e1} else {e2}.
By inversion on (243), we have

∅ `γ1 a : 〈n〉i (248)
Φ, a 6= 0, h1 `γ1 e1 : T ∗/h∗ (249)
Φ, a = 0, h1 `γ1 e2 : T ∗/h∗ (250)

The evaluation rule used is [R-Pure] and either [R-If-True] or [R-If-False]. We show the [R-If-
True] case; [R-If-False] is similar.

By the forms of [R-Pure] and [R-If-True] and inversion on (244), we have

a 6= 〈W 〉0
e′ = e1

h2 = h1

h′ = h

Thus, a 6= 0 ↪→Φ 〈W 〉n for some n 6= 0, so by Lemma 11, Lemma 10, and (249),

Φ, ∅, h2 ` e′ : T ∗/h∗.

The remaining conditions are trivial by the assumptions.

• Case [T-Let] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (251)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (252)

h |=γ1 h1 (253)
∅ ` h1 (254)

h 7→ h1 ` γ1 (255)

with e ≡ let x = v in e2.

By inversion on [T-Let] (251), we have

Φ, ∅, h1 `γ1 v : T1/h′1 (256)
Φ, x :T1, h

′
1 `γ1 e2 : T ∗/h∗ (257)

∅ `γ1 T̂ ∗/h∗ (258)

48

Since v is a value, the it is typed by [T-Pure], and so

h′1 = h1 (259)

The evaluation rule used is [R-Let]; by the form of the rule, we have

e′ ≡ e2[v/x] (260)
h2 ≡ h′1 (261)
γ2 ≡ γ1 (262)

We show Φ, ∅, h2 `γ2 e′ : T ∗/h∗.

By (257), (261), and (262),

Φ, x :T1, h2 `γ2 e′ : T ∗/h∗

Since v is a value and must be typed by [T-Pure], inversion on (256) gives

∅ `γ1 v : T1

By (262), this is equivalent to

∅ `γ2 v : T1

Thus, by [WS-Empty] and [WS-Ext],

x :T1 |=γ2 [v/x]

By Lemma 21,

Φ, ∅, h2[v/x] `γ2 e′[v/x] : T ∗[v/x]/h∗[v/x]

By (254), (261), (258), and Lemma 13,

FreeVar(h2) = FreeVar(T ∗) = FreeVar(h∗) = ∅

which gives

Φ, ∅, h2 `γ2 e′[v/x] : T ∗/h∗

The remaining obligations follow from the assumptions and the inductive hypothesis.

• Case [T-Unfold] Assume

Φ, ∅, h1 `γ1 e1 : T ∗/h∗ (263)
e1/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (264)

h |=γ1 h1 (265)
∅ ` h1 (266)

h 7→ h1 ` γ1 (267)

49

with e1 ≡ letu x = [unfold ` 7→ `j] a in e. By inversion on [T-Unfold] (263),

∅ `γ1 a : {ν :ref(˜̀, iy) | ν 6= 0} (268)

h1 ≡ h0 ∗ ˜̀ 7→ n1 :T1 . . . , i+ :T+ . . . (269)
θ ≡ [xi/@n . . .] (270)

xi fresh (271)
Γ1 ≡ x1 :T1;. . . (272)
`k fresh (273)

h′1 ≡ h1 ∗ `k 7→ n :{ν = x1} . . . , i+ :θT+ . . . (274)
Φ,Γ1;x :{x :ref(`k, iy) | ν = a}, h′1 `γ1 e : T ∗/h∗ (275)
Γ1 ` h′1 (276)
∅ ` T ∗/h∗ (277)

The only evaluation rule that applies is [R-Unfold]; by inversion on (264):

a ≡ ref(r, n) (278)
h ≡ hu ∗ r 7→ b (279)

θ2 ≡ [b(n)/@n . . .] (280)
`j fresh (281)

h2 ≡ h1 ∗ `j 7→ n :{ν = b(n)} . . . , i+ :θ2T
+ . . . (282)

γ2 ≡ γ1[r 7→ `j] (283)
e′ ≡ e[ref(`j , n)/x] (284)

We first show Φ, ∅, h2 `γ2 e′ : T ∗/h∗.

By Lemma 2, (268), and (278)

γ1(r) = ˜̀ or γ1(r) = `k

By (276) and inversion on [WF-Concrete],

`k /∈ Dom(h1)

By (267) and Definition 8,

`k /∈ Rng(γ1)

So we have

γ1(r) = ˜̀

Then by (265), (279), and Definition 10,

∅ `γ1 b |=˜̀ n1 :T1 . . . , i+ :T+ . . .

Let

θ′ ≡ [b(n)/x1 . . .]

50

Then by the above, (266), (272), (271), and Lemma 24,

Γ1 |=γ1 θ′

Using this fact along with (275) and Lemma 21, we have

Φ,x :θ′{x :ref(`j , iy) | ν = a}, θ′h′1 `γ1 θ′e : θ′T ∗/θ′h∗

By (271), (277), and Lemma 13, most substitutions can be eliminated:

Φ,x :{x :ref(`j , iy) | ν = a}, θ′h′1 `γ1 e : T ∗/h∗

Note that θ′h′1 = h2, so

Φ,x :{x :ref(`j , iy) | ν = a}, h2 `γ1 e : T ∗/h∗

By Lemma 32 and (283),

Φ,x :{x :ref(`j , iy) | ν = a}, h2 `γ2 e : T ∗/h∗

By (278), (268), and Lemma 2,

n ∈ iy

By (283),

γ2(r) = `j

By [T-Ref], [T-PureSub], [<:-Ref], and the above,

∅ `γ2 ref(r, n) : {ν :ref(`j , iy) | ν = a}

It follows by [WS-Ext] and [WS-Empty] that

x :{x :ref(`j , iy) | ν = a} |=γ2 [a/x]

So by Lemma 21 we have

Φ,∅, h2[a/x] `γ2 e[a/x] : T ∗[a/x]/h∗[a/x]

By (277) and ∅ ` h2 (to be shown),

FreeVar(T ∗) = FreeVar(h∗) = FreeVar(h2) = ∅

so we have

Φ,∅, h2 `γ2 e[a/x] : T ∗/h∗.

We next observe that
∅ ` h2

by (266) and the fact that h2 does not alter base types or add variable bindings not present in h1.

51

We now show that h′ 7→ h2 ` γ2.

By (267) and Definition 8,

Dom(γ1) = Dom(h)

But h′ ≡ h, so by (283), so

r ∈ Dom(h)
Dom(γ2) = Dom(γ1)

and so

Dom(γ2) = Dom(h′).

This proves the first condition. By (267) and Definition 8,

Rng(γ1) ⊆ Dom(h1)

By (283) and (282),

Rng(γ2) = Rng(γ1) ∪ {`j}
Dom(h2) = Dom(h1) ∪ {`j}

and so

Rng(γ2) ⊆ Dom(h2)

thus proving the second condition. Finally, note that, by (267) and (276),

`j /∈ Rng(γ1)
γ1(r1) = `k,γ1(r2) = `k ⇒ r2 = r1

for all `k, r1, and r2. It immediately follows that

γ1[r 7→ `j](r1) = `k,γ1[r 7→ `j](r2) = `k ⇒ r2 = r1

thus proving the third condition.

Finally, we show that h′ |=γ2 h2. Since

h′ ≡ h

this means h |=γ2 h2. By Lemma 32,

h |=γ2 h1

52

Let r′ ∈ Dom(γ2). Suppose r′ 6= r. Then we have

γ2(r′) = γ1(r′)

and the appropriate modeling relationship follows immediately, since the location has not changed in
either heap.

Now suppose r′ = r. By (265),

γ2(r) = `j

Since h |=γ2 h1, by Definition 10,

`γ2 h(r) |=˜̀ h1(˜̀)

By (282), (280), ∅ ` h2, and Lemma 30,

`γ2 h(r) |=` h2(`j),

as required.

• Case [T-Fold] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (285)
e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (286)

h |=γ1 h1 (287)
∅ ` h1 (288)

h 7→ h1 ` γ1 (289)

with e ≡ [fold `j 7→ `].

By the form of [T-Fold], we have

h1 = h0 ∗ ˜̀ 7→ b1 ∗ `j 7→ b2 (290)
T ∗ = void (291)

h∗ = h0 ∗ ˜̀ 7→ b1 (292)

By inversion on [T-Fold] (285),

∅ ` b2 <: b1 (293)

By the form of [R-Fold] and inversion on (286), we have

e′ = void (294)
h′ = h (295)

h2 = h0 ∗ ˜̀ 7→ b1 (296)

γ2 ≡ γ1[`j 7→ ˜̀] (297)

We first note that Φ, ∅, h2 `γ2 e′ : T ∗/h∗ follows immediately from [T-Int], [T-Pure], and h∗ = h2.

We now show h′ |=γ2 h2. Let r ∈ Dom(γ1) = Dom(γ2). There are three cases:

53

1. Case γ1(r) = `j , γ2(r) = ˜̀:

By Definition 10,

∅ `γ1 h(r) |=` b2

By (288) and Lemma 29,

∅ `γ1 h(r) |=˜̀ b2

By (293), (288), and Lemma 27,

∅ `γ1 h(r) |=˜̀ b1

By Lemma 23 and (297),

∅ `γ2 h(r) |=˜̀ b1[˜̀/`j]

2. Case γ1(r) = γ2(r) = `′k, `′ 6= `:

By Definition 10,

∅ `γ1 h(r) |=` h1(`k)

By Lemma 23 and (297),

∅ `γ2 h(r) |=` h1(`k)[˜̀/`j]

By (296),

∅ `γ2 h(r) |=` h2(`k)

3. Case γ1(r) = γ2(r) = ˜̀′, `′ 6= `: Similar to the previous cases.

We obtain ∅ ` h2 immediately from (288) and Lemma 23.

Finally, we show h′ 7→ h2 ` γ2.

By (289) and Definition 8,

Dom(γ1) = Dom(h)

By (297) and (295),

Dom(γ2) = Dom(γ1)

so

Dom(γ2) = Dom(h)

By (289) and Definition 8,

Rng(γ1) ⊆ Dom(h1)

54

By (296),

Dom(h2) = Dom(h1) \ {`j}

By (297),

Rng(γ2) = Rng(γ1) \ {`j}

so

Rng(γ2) ⊆ Dom(h2)

Finally, by (289) and Definition 8,

γ1(r1) = `k,γ1(r2) = `k ⇒ r1 = r2

It follows immediately that

γ1[r 7→ ˜̀](r) = `k,γ1[r 7→ ˜̀](r′) = `k ⇒ r = r′

• Case [T-Call] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (298)
e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (299)

h |=γ1 h1 (300)
∅ ` h1 (301)

h 7→ h1 ` γ1 (302)
` Φ (303)

with e ≡ [` . . .] f(aj . . .).

By inversion on [T-Call] (298), we have

Φ(f) ≡ Φ(f) = ·,∀`fxj :Tj . . ./hf→T ′/h′f (304)
h1 ≡ hu ∗ hm (305)
∅ ` hm (306)
∅ ` hu (307)
ρ ≡ [`/`f . . .] (308)
θ ≡ [aj/xj . . .] (309)

xj :Tj . . . , hf ` ρ (310)
∅ ` hm <: θρhf (311)

for each j ∅ `γ1 aj : θρTj (312)
T ∗ ≡ θρT (313)
h∗ ≡ hu ∗ θρh′f (314)

The only evaluation rules that apply are [R-Pure] and [R-Call]; by inversion on (299), we have

Φ(f) ≡ Φ(f) = fun(xj . . .){ef} : , . . . (315)
e′ ≡ θρe (316)
h2 ≡ hu ∗ θρhf (317)
h′ ≡ h (318)
γ2 ≡ γ1 (319)

55

We first show Φ, ∅, h2 `γ2 e′ : T ∗/h∗.

By (304), (315), inversion on [WF-Genv] (303), and Lemma 18,

Φ, xj :Tj . . . , hf `∅ ef : T/h′f (320)

xj :Tj . . . ` hf (321)

By (320) and Corollary 2,

Φ, xj :Tj . . . , hf `γ2 ef : T/h′f (322)

By (310), (321), and Lemma 22,

Φ, xj :ρTj . . . , ρhf `γ2 ρef : ρT/ρh′f (323)

xj :ρTj . . . ` ρhf (324)

By (312) and an easy induction,

xj :ρTj . . . |=γ2 θ (325)

Thus, by Lemma 21,

Φ, ∅, θρhf `γ2 θρef : θρT/θρh′f (326)

∅ ` θρhf (327)

By (307), (306), (301), and Lemma 16,

Dom(hm) ∩ Dom(hu) = ∅ (328)

By (311) and Lemma 9,

Dom(hm) = Dom(θρhf) (329)

So

Dom(hu) ∩ Dom(θρhf) = ∅ (330)

By (327), (330), (307), and Lemma 17,

Φ, ∅, θρhf ∗ hu `γ2 θρef : θρT/θρh′f ∗ hu (331)

By (314), (313), (317), and (316), this is equivalent to

Φ, ∅, h2 `γ2 e′ : T ∗/h∗ (332)

We next show h′ 7→ h2 ` γ2. By (317), (318), and (319), this is equivalent to

h 7→ hu ∗ θρhf ` γ1

But by (329),
Dom(hu ∗ θρhf) = Dom(h1)

56

so by (302) and the above, we have
h′ 7→ h2 ` γ2.

We have ∅ ` h2 immediately by (330), (307), (327), and Lemma 16.

Finally, we show h′ |=γ2 h2.

By (328), (318), (319), and Lemma 31,

h′ |=γ2 hu

h′ |=γ2 hm

By (311) and Corollary 1,

h′ |=γ2 θρhf

Thus by (330) and Lemma 31,

h′ |=γ2 hu ∗ θρhf

By (317),

h′ |=γ2 h2

• Case [T-Malloc] Assume

Φ, ∅, h1 `γ1 e : T ∗/h∗ (333)
e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2 (334)

h |=γ1 h1 (335)
∅ ` h1 (336)

h 7→ h1 ` γ1 (337)
` Φ (338)

with e ≡ malloc(` 7→ `j , a).

By inversion on [T-Malloc] (333), we have

T ∗ ≡ {ν :ref(`j , 0) | Safe(ν) ∧ BS (ν) + a = BE (ν)} (339)

h∗ ≡ h1 ∗ `j 7→ b> (340)

The only evaluation rule which applies is [R-Malloc]; by inversion on (334), we have

e′ ≡ ref(r, 0) (341)
r fresh (342)

γ2 ≡ γ1[r 7→ `j] (343)
h′ ≡ h ∗ r 7→ Raw(b) (344)
h2 ≡ h∗ (345)

By (339), (341), (343), (345), [T-Malloc], and [T-Pure], we have

Φ, ∅, h2 ` e′ : T ∗/h∗ (346)

57

We next show `γ2 h′ |= h2. Let r ∈ Dom(γ2).

First, suppose γ1(r′) = `j , r′ 6= r. By (335) and Definition 10,

`γ1 h(r′) |=` h1(γ1(r′)) (347)

Since r is fresh, γ2(r′) = γ1(r′). By (344), (345), and Lemma 33,

`γ2 h′(r′) |=` h2(γ2(r′)) (348)

The case where γ1(r′) = ˜̀ is similar.

Finally, we have

`γ2 Raw(b) |=` b> (349)

by definition. Together, the above three facts and Definition 10 give

h′ |=γ2 h2 (350)

By (336), we have

∅, h1 ` b (351)

It follows by definition that

∅, h2 ` b> (352)

and so

∅ ` h2 (353)

Finally, we note that

Dom(h2) = Dom(h1) ∪ {`j} (354)
Dom(h′) = Dom(h) ∪ {r}Dom(γ2) = Dom(γ1) ∪ {r} (355)
Rng(γ2) = Rng(γ1) ∪ {`j} (356)

by (345), (344), and (343). By (337),

Dom(γ1) = Dom(h) (357)
Rng(γ1) ⊆ Dom(h1) (358)

By the above and Definition 8,

h′ 7→ h2 ` γ2 (359)

2

58

Pure Reduction Rules r ↪→Φ r′

m = [[+]](m1,m2)
〈n〉m1 + 〈n〉m2 ↪→Φ 〈n〉m

[R-Arith]

m = [[+p]](m1,m2)
ref(`j ,m1) +p 〈n〉m2 ↪→Φ ref(`j ,m)

[R-Ptr-Arith]

m = [[∼]](m1,m2)
ref(`j ,m1) ∼ ref(`j ,m2) ↪→Φ 〈W 〉m

[R-Ptr-Cmp]

v 6= 〈n〉0
assert(v) ↪→Φ void

[R-Assert]

v 6= 〈n〉0
if v then e1 else e2 ↪→Φ e1

[R-If-True]

v = 〈n〉0
if v then e1 else e2 ↪→Φ e2

[R-If-False]

let x = v in e ↪→Φ e[v/x] [R-Let]

Φ(f) = fun(x . . .){e} : ∀`fx :T . . ./hf→T ′/h′f
[` . . .] f(v . . .) ↪→Φ e[v . . ./x . . .][` . . ./`f . . .]

[R-Call]

Reduction Rules e/h |=γ1 h1 ↪→Φ e′/h′ |=γ2 h2

r ↪→Φ r′

r/h |=γ h1 ↪→Φ r′/h |=γ h1

[R-Pure]

r/h |=γ1 h1 ↪→Φ r′/h′ |=γ2 h2

C[r]/h |=γ1 h1 ↪→Φ C[r′]/h′ |=γ2 h2

[R-Context]

h1 ≡ h0 ∗ ˜̀ 7→ b

r fresh h′ ≡ h ∗ r 7→ Raw(b) h2 ≡ h1 ∗ `j 7→ b> γ2 ≡ γ1[r 7→ `j] m > 0
malloc(` 7→ `j , 〈n〉m)/h |=γ1 h1 ↪→Φ ref(r, 0)/h′ |=γ2 h2

[R-Malloc]

v ≡ ref(r, n) h ≡ hu ∗ r 7→ b BS (v) ≤ v < BE (v) b(n) = v′

∗v/h |=γ h1 ↪→Φ v′/h |=γ h1

[R-Read]

v1 ≡ ref(r, n)
γ(r) = `j h ≡ hu ∗ r 7→ b h1 ≡ h0 ∗ `j 7→ . . . , n :T , . . . BS (v1) ≤ v1 < BE (v1)

Fit(b, n, v2) h′ ≡ hu ∗ r 7→ Upd(b, n, v2) h2 ≡ h0 ∗ `j 7→ . . . , n :{ν = v2}, . . .
∗v1 := v2/h |=γ h1 ↪→Φ void/h′ |=γ h2

[R-Write-Field]

v1 ≡ ref(r, n)
n ∈ i+ γ(r) = `j h ≡ hu ∗ r 7→ b h1 ≡ h0 ∗ `j 7→ . . . , i+ :T , . . .
BS (v1) ≤ v1 < BE (v1) Fit(b, n, v2) h′ ≡ hu ∗ `j 7→ Upd(b, n, v2)

∗v1 := v2/h |=γ h1 ↪→Φ void/h′ |=γ h2

[R-Write-Array]

v ≡ ref(r, m) h ≡ hu ∗ r 7→ b h1 ≡ h0 ∗ ˜̀ 7→ ~n :T , i+ :T ∗

θ ≡ [b(n)/@n . . .] h2 ≡ h1 ∗ `j 7→ ~n :θT , i+ :θT ∗ γ2 ≡ γ1[r 7→ `j]
letu x = [unfold ` 7→ `j] v in e/h |=γ1 h1 ↪→Φ e[v/x]/h |=γ2 h2

[R-Unfold]

h1 ≡ h2 ∗ `j 7→ b γ2 ≡ γ1[r 7→ ˜̀]

[fold `j 7→ `]/h |=γ1 h1 ↪→Φ void/h |=γ2 h2[˜̀/`j]
[R-Fold]

Figure 7: Reduction Rules
59

Type Well-Formedness Γ, h ` T

0 ≤ n Γ;ν :〈n〉i ` a

Γ, h ` {ν :〈n〉i | a}
[WF-Int]

` ∈ Dom(h) Γ;ν :ref(`, i) ` a

Γ, h ` {ν :ref(`, i) | a}
[WF-ref]

Abstract Block Well-Formedness Γ, h `˜̀ b

Γ, h ` T Ind(i, T) ∩ Dom(b) = ∅ x fresh Γ;x :T , h `˜̀ b[x/@i]
Γ, h `˜̀ i :T , b

[WF-Field]

Γ, h ` T Ind(i, T) ∩ Dom(b) = ∅ Γ, h `˜̀ b

Γ, h `˜̀ i :T , b
[WF-Array]

Concrete Block Well-Formedness Γ, h `` b

Γ, h ` T Ind(i, T) ∩ Dom(b) = ∅ Γ, h `` b

Γ, h `` i :T , b
[WF-ConcBlock]

Heap Well-Formedness Γ ` h

Γ ` emp
[WF-Empty]

˜̀∈ Dom(h) `k /∈ Dom(h) Γ ` h Γ, h ∗ `j 7→ b ``j b

Γ ` h ∗ `j 7→ b
[WF-Concrete]

˜̀ /∈ Dom(h) Γ ` h Γ, h ∗ ˜̀ 7→ b `˜̀ b

Γ ` h ∗ ˜̀ 7→ b
[WF-Abstract]

World Well-Formedness Γ ` T/h

Γ, h ` T Γ ` h

Γ ` T/h
[WF-World]

Schema Well-Formedness ` S

x1 :T1 . . . ` h for each xi, x1 :T1 . . . xi−1 :Ti−1, h ` Ti x1 :T1 . . . ` T ′/h′

` ∀`(x1 :T1 . . .)/h → T ′/h′
[WF-Schema]

Global Environment Well-Formedness ` Φ

Φ ≡ Φ′;f : fun(xj){e} : ∀`xj :Tj . . ./hf→T ′/h′f
xj :Tj . . . ` hf Φ, xj :Tj . . . , hf `∅ e : T ′/h′f f /∈ Dom(Φ′) ` Φ′

` Φ
[WF-Genv]

Figure 8: Well-Formedness

60

Pure Typing Γ `γ a : T

Γ `γ a : T1 Γ ` T1 <: T2 Γ ` T2

Γ `γ a : T2

[T-PureSub]

0 ≤ w

Γ `γ 〈w〉n : {ν :〈w〉n | ν = 〈w〉n}
[T-Int]

γ(r) = `

Γ `γ ref(r, n) : {ν :ref(`, n) | ν = ref(r, n)}
[T-Ref]

γ(r) = `

Γ `γ ref(r, 0) : {ν :ref(`, 0) | a}
[T-NewRef]

Γ(x) = {ν :τ | a}
Γ `γ x : {ν :τ | ν = x}

[T-Var]

Γ `γ a1 : 〈n〉i1 Γ `γ a2 : 〈n〉i2
Γ `γ a1 + a2 : {ν :〈n〉+(i1,i2) | ν = a1 + a2}

[T-Arith]

Γ `γ a1 : ref(`, i1) Γ `γ a2 : 〈n〉i2
Γ `γ a1 +p a2 : {ν :ref(`,+(i1, i2)) | PAdd(ν, a1, a2)}

[T-Ptr-Arith]

Γ `γ a1 : ref(`, i1) Γ `γ a2 : ref(`, i2)
Γ `γ a1 ∼ a2 : {ν :〈W 〉∼(i1,i2) | ν = a1 ∼ a2}

[T-Ptr-Comp]

Γ `γ a : {ν :int | v 6= 0}
Γ `γ assert(a) : void

[T-Assert]

Figure 9: Pure Typing Rules

61

Subtyping Γ ` T1 <: T2

i1 ⊆ i2 Valid([[Γ]] ∧ [[a1]] ⇒ [[a2]])
Γ ` {ν :〈n〉i1 | a1} <: {ν :〈n〉i2 | a2}

[<:-Int]

i1 ⊆ i2 Valid([[Γ]] ∧ [[a1]] ⇒ [[a2]])
Γ ` {ν :ref(`, i1) | a1} <: {ν :ref(`, i2) | a2}

[<:-Ref]

Γ ` {ν :ref(`j , i) | a} <: {ν :ref(˜̀, i) | a}
[<:-Abstract]

Γ ` {ν :〈W 〉0 | a} <: {ν :ref(˜̀, i) | a}
[<:-NullPtr]

Block Subtyping Γ ` b1 <: b2

Γ ` emp <: emp
[<:-Block-Empty]

Γ ` T1 <: T2 x fresh Γ;x :T1 ` b1[x/@n] <: b2[x/@n]
Γ ` n : T1, b1 <: n : T2, b2

[<:-Field]

Γ ` T1 <: T2 Γ ` b1 <: b2

Γ ` n+m : T1, b1 <: n+m : T2, b2

[<:-Array]

Heap Subtyping Γ ` h1 <: h2

Γ ` b1 <: b2 Γ ` h1 <: h2

Γ ` h1 ∗ ` 7→ b1 <: h2 ∗ ` 7→ b2

[<:-Heap]

World Subtyping Γ ` T1/h1 <: T2/h2

Γ ` T1 <: T2 Γ ` h1 <: h2

Γ ` T1/h1 <: T2/h2

[<:-World]

Figure 10: Subtyping

62

Expression Typing Φ,Γ, h `γ e : T/h′

Γ `γ a : T

Φ,Γ, h `γ a : T/h
[T-Pure]

Φ,Γ, h `γ e : T1/h1 Γ ` T1/h1 <: T2/h2 Γ ` T2/h2

Φ,Γ, h `γ e : T2/h2

[T-Sub]

Γ `γ a : 〈n〉i Φ,Γ;a 6= 0, h `γ e1 : T̂ /ĥ′ Φ,Γ;a = 0, h `γ e2 : T̂ /ĥ′

Φ,Γ, h `γ if a then e1 else e2 : T̂ /ĥ′
[T-If]

Φ,Γ, h `γ e1 : T1/h1 Φ,Γ;x :T1, h1 `γ e2 : T̂2/ĥ2 Γ `γ T̂2/ĥ2

Φ,Γ, h `γ let x = e1 in e2 : T̂2/ĥ2

[T-Let]

Γ `γ a : {ν :ref(`j , i) | Safe(ν)} h ≡ h1 ∗ `j 7→ . . . , i :T , . . .

Φ,Γ, h `γ ∗a : T/h
[T-Read]

Γ `γ a1 : {ν :ref(`j , n) | Safe(ν)} Γ `γ a2 : τ h ≡ h1 ∗ `j 7→ . . . , n :{ν :τ2 | a}, . . .
Size(τ) = Size(τ2) h′ ≡γ h1 ∗ `j 7→ . . . , n :{ν :τ | ν = a2}, . . .

Φ,Γ, h `γ ∗a1 := a2 : void/h′
[T-Write-Field]

Γ `γ a1 : {ν :ref(`j , n
+m) | Safe(ν)} Γ `γ a2 : T̂ h ≡ h1 ∗ `j 7→ . . . , n+m : T̂ , . . .

Φ,Γ, h `γ ∗a1 := a2 : void/h
[T-Write-Array]

Γ `γ a : {ν :ref(˜̀, iy) | ν 6= 0} h ≡ h0 ∗ ˜̀ 7→ i :Ti . . . , i+ :T+ . . .
θ ≡ [xi/@i . . .] Γ1 ≡ Γ;xi :θTi . . . xi fresh h1 ≡ h ∗ `j 7→ i :{ν = xi} . . . , i+ :θT+ . . .

Φ,Γ1;x :{ν :ref(`j , iy) | ν = a}, h1 `γ e : T̂2/ĥ2 Γ1 ` h1 Γ ` T̂2/ĥ2

Φ,Γ, h `γ letu x = [unfold ` 7→ `j] a in e : T̂2/ĥ2

[T-Unfold]

Γ ` b2 <: b̂1

Φ,Γ, h ∗ ˜̀ 7→ b̂1 ∗ `j 7→ b2 `γ [fold `j 7→ `] : void/h ∗ ˜̀ 7→ b̂1

[T-Fold]

h ≡ h0 ∗ ˜̀ 7→ b Γ ` h ∗ `j 7→ b>

Γ `γ a : {ν :int | ν > 0} T ≡ {ν :ref(`j , 0) | Safe(ν) ∧ BS (ν) + a = BE (ν)}
Φ,Γ, h `γ malloc(` 7→ `j , a) : T/h ∗ `j 7→ b>

[T-Malloc]

Γ ` hm Γ ` hu Φ(f) = ·,∀`xj :Tj . . ./hf→T ′/h′f θ ≡ [aj . . ./xj . . .]
ρ ≡ [` . . ./ρ . . .] xj :Tj . . . , hf ` ρ foreach j,Γ `γ aj : θρTj Γ ` hm <: θρhf

Φ,Γ, hu ∗ hm `γ [` . . .] f(aj . . .) : θρT ′/hu ∗ θρh′f
[T-Call]

Figure 11: Expression Typing Rules

63

Program Typing Φ ` p : T/h

Φ, ∅, ˜̀ 7→ b . . . `∅ e : T/h

Φ ` e/˜̀ 7→ b . . . : T/h
[T-Main]

` Ŝ Ŝ ≡ ∀ρxj : T̂j . . ./ĥ→T̂ ′/ĥ′

Φ;f : Ŝ, xj : T̂j . . . , ĥ `∅ e : T̂ ′/ĥ′ ∗ h0 xj : T̂j . . . ` T̂ ′/ĥ′ xj : T̂j . . . ` h0 Φ;f : Ŝ ` p : T/h

Φ ` letf f = fun(xj){e} : Ŝ in p : T/h
[T-Fun]

Figure 12: Program Typing

Program Lines Qualifiers Time (s)

stringlist 72 3 3
pmap 250 5 44
mst 312 5 26
adpcm 181 16 480

Total 815 29 553

Figure 13: Results. Lines is the number of source lines without comments. Qualifiers is the number of
logical qualifiers used. Time (s) is the time in seconds Csolve requires to verify safety.

64

Concrete Block Modeling `γ b1 |=` b2

`γ b1 |=` emp
[CBM-Empty]

`γ b1 |= i :T `γ b1 |=` b2

`γ b1 |=` i :T , b2

[CBM-Ext]

Abstract Block Modeling `γ b1 |=˜̀ b2

`γ b1 |=˜̀ emp
[ABM-Empty]

`γ b1 |= n :T `γ b1 |=˜̀ b2[b1(n)/@n]
`γ b1 |=˜̀ n :T , b2

[ABM-Field]

`γ b1 |= n+m :T `γ b1 |=˜̀ b2

`γ b1 |=˜̀ n+m :T , b2

[ABM-Array]

Well-Formed Value Substitutions Γ |=γ θ

∅ |=γ ∅
[WS-Empty]

Γ[x 7→ v] |=γ θ ∅ `γ v : T

x :T ;Γ |=γ [x 7→ v];θ
[WS-Ext]

Γ |=γ θ a ↪→∗ v v 6= 〈w〉0
a;Γ |=γ θ

[WS-Gxt]

Well-Formed Location Substitutions Γ, h |= ρ

ρ injective ρΓ ` ρh

Γ, h |= ρ
[WL-LocSub]

Implication Γ ` a1 ⇒ a2

Γ ` a1 : int Γ ` a2 : int ∀ρ.Γ |= ρ and ρa1 ↪→∗ v1, v1 6= 〈w1〉0 implies ρa2 ↪→∗ v2, v2 6= 〈w2〉0
Γ ` a1 ⇒ a2

[Imp]

Figure 14: Implication

65

	Introduction
	Overview
	Local Invariants
	Heap-block Invariants
	Data Structure Invariants

	Language
	Syntax
	Types
	Operational Semantics

	Type System
	Typing Rules
	Type Checking Memory Operations
	Type Soundness
	Type Inference

	Evaluation
	Related Work
	Soundness of Type Checking
	Definitions
	Forms Lemmas
	Subtyping Lemmas
	Environment Lemmas
	Substitution Lemmas
	Modeling Lemmas
	Location Map Lemmas
	Progress
	Preservation

